Metamath Proof Explorer


Theorem sswrd

Description: The set of words respects ordering on the base set. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016) (Proof shortened by AV, 13-May-2020)

Ref Expression
Assertion sswrd
|- ( S C_ T -> Word S C_ Word T )

Proof

Step Hyp Ref Expression
1 fss
 |-  ( ( w : ( 0 ..^ ( # ` w ) ) --> S /\ S C_ T ) -> w : ( 0 ..^ ( # ` w ) ) --> T )
2 1 expcom
 |-  ( S C_ T -> ( w : ( 0 ..^ ( # ` w ) ) --> S -> w : ( 0 ..^ ( # ` w ) ) --> T ) )
3 iswrdb
 |-  ( w e. Word S <-> w : ( 0 ..^ ( # ` w ) ) --> S )
4 iswrdb
 |-  ( w e. Word T <-> w : ( 0 ..^ ( # ` w ) ) --> T )
5 2 3 4 3imtr4g
 |-  ( S C_ T -> ( w e. Word S -> w e. Word T ) )
6 5 ssrdv
 |-  ( S C_ T -> Word S C_ Word T )