| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpnz |
|- ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) ) |
| 2 |
|
dmxp |
|- ( B =/= (/) -> dom ( A X. B ) = A ) |
| 3 |
2
|
adantl |
|- ( ( A =/= (/) /\ B =/= (/) ) -> dom ( A X. B ) = A ) |
| 4 |
1 3
|
sylbir |
|- ( ( A X. B ) =/= (/) -> dom ( A X. B ) = A ) |
| 5 |
4
|
adantr |
|- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) C_ ( C X. D ) ) -> dom ( A X. B ) = A ) |
| 6 |
|
dmss |
|- ( ( A X. B ) C_ ( C X. D ) -> dom ( A X. B ) C_ dom ( C X. D ) ) |
| 7 |
6
|
adantl |
|- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) C_ ( C X. D ) ) -> dom ( A X. B ) C_ dom ( C X. D ) ) |
| 8 |
5 7
|
eqsstrrd |
|- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) C_ ( C X. D ) ) -> A C_ dom ( C X. D ) ) |
| 9 |
|
dmxpss |
|- dom ( C X. D ) C_ C |
| 10 |
8 9
|
sstrdi |
|- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) C_ ( C X. D ) ) -> A C_ C ) |
| 11 |
|
rnxp |
|- ( A =/= (/) -> ran ( A X. B ) = B ) |
| 12 |
11
|
adantr |
|- ( ( A =/= (/) /\ B =/= (/) ) -> ran ( A X. B ) = B ) |
| 13 |
1 12
|
sylbir |
|- ( ( A X. B ) =/= (/) -> ran ( A X. B ) = B ) |
| 14 |
13
|
adantr |
|- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) C_ ( C X. D ) ) -> ran ( A X. B ) = B ) |
| 15 |
|
rnss |
|- ( ( A X. B ) C_ ( C X. D ) -> ran ( A X. B ) C_ ran ( C X. D ) ) |
| 16 |
15
|
adantl |
|- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) C_ ( C X. D ) ) -> ran ( A X. B ) C_ ran ( C X. D ) ) |
| 17 |
14 16
|
eqsstrrd |
|- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) C_ ( C X. D ) ) -> B C_ ran ( C X. D ) ) |
| 18 |
|
rnxpss |
|- ran ( C X. D ) C_ D |
| 19 |
17 18
|
sstrdi |
|- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) C_ ( C X. D ) ) -> B C_ D ) |
| 20 |
10 19
|
jca |
|- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) C_ ( C X. D ) ) -> ( A C_ C /\ B C_ D ) ) |
| 21 |
20
|
ex |
|- ( ( A X. B ) =/= (/) -> ( ( A X. B ) C_ ( C X. D ) -> ( A C_ C /\ B C_ D ) ) ) |
| 22 |
|
xpss12 |
|- ( ( A C_ C /\ B C_ D ) -> ( A X. B ) C_ ( C X. D ) ) |
| 23 |
21 22
|
impbid1 |
|- ( ( A X. B ) =/= (/) -> ( ( A X. B ) C_ ( C X. D ) <-> ( A C_ C /\ B C_ D ) ) ) |