Step |
Hyp |
Ref |
Expression |
1 |
|
df-pr |
|- { +oo , -oo } = ( { +oo } u. { -oo } ) |
2 |
1
|
ineq2i |
|- ( A i^i { +oo , -oo } ) = ( A i^i ( { +oo } u. { -oo } ) ) |
3 |
|
indi |
|- ( A i^i ( { +oo } u. { -oo } ) ) = ( ( A i^i { +oo } ) u. ( A i^i { -oo } ) ) |
4 |
2 3
|
eqtri |
|- ( A i^i { +oo , -oo } ) = ( ( A i^i { +oo } ) u. ( A i^i { -oo } ) ) |
5 |
|
disjsn |
|- ( ( A i^i { +oo } ) = (/) <-> -. +oo e. A ) |
6 |
|
disjsn |
|- ( ( A i^i { -oo } ) = (/) <-> -. -oo e. A ) |
7 |
5 6
|
anbi12i |
|- ( ( ( A i^i { +oo } ) = (/) /\ ( A i^i { -oo } ) = (/) ) <-> ( -. +oo e. A /\ -. -oo e. A ) ) |
8 |
7
|
biimpri |
|- ( ( -. +oo e. A /\ -. -oo e. A ) -> ( ( A i^i { +oo } ) = (/) /\ ( A i^i { -oo } ) = (/) ) ) |
9 |
|
pm4.56 |
|- ( ( -. +oo e. A /\ -. -oo e. A ) <-> -. ( +oo e. A \/ -oo e. A ) ) |
10 |
|
un00 |
|- ( ( ( A i^i { +oo } ) = (/) /\ ( A i^i { -oo } ) = (/) ) <-> ( ( A i^i { +oo } ) u. ( A i^i { -oo } ) ) = (/) ) |
11 |
8 9 10
|
3imtr3i |
|- ( -. ( +oo e. A \/ -oo e. A ) -> ( ( A i^i { +oo } ) u. ( A i^i { -oo } ) ) = (/) ) |
12 |
4 11
|
eqtrid |
|- ( -. ( +oo e. A \/ -oo e. A ) -> ( A i^i { +oo , -oo } ) = (/) ) |
13 |
|
reldisj |
|- ( A C_ ( RR u. { +oo , -oo } ) -> ( ( A i^i { +oo , -oo } ) = (/) <-> A C_ ( ( RR u. { +oo , -oo } ) \ { +oo , -oo } ) ) ) |
14 |
|
renfdisj |
|- ( RR i^i { +oo , -oo } ) = (/) |
15 |
|
disj3 |
|- ( ( RR i^i { +oo , -oo } ) = (/) <-> RR = ( RR \ { +oo , -oo } ) ) |
16 |
14 15
|
mpbi |
|- RR = ( RR \ { +oo , -oo } ) |
17 |
|
difun2 |
|- ( ( RR u. { +oo , -oo } ) \ { +oo , -oo } ) = ( RR \ { +oo , -oo } ) |
18 |
16 17
|
eqtr4i |
|- RR = ( ( RR u. { +oo , -oo } ) \ { +oo , -oo } ) |
19 |
18
|
sseq2i |
|- ( A C_ RR <-> A C_ ( ( RR u. { +oo , -oo } ) \ { +oo , -oo } ) ) |
20 |
13 19
|
bitr4di |
|- ( A C_ ( RR u. { +oo , -oo } ) -> ( ( A i^i { +oo , -oo } ) = (/) <-> A C_ RR ) ) |
21 |
12 20
|
syl5ib |
|- ( A C_ ( RR u. { +oo , -oo } ) -> ( -. ( +oo e. A \/ -oo e. A ) -> A C_ RR ) ) |
22 |
21
|
orrd |
|- ( A C_ ( RR u. { +oo , -oo } ) -> ( ( +oo e. A \/ -oo e. A ) \/ A C_ RR ) ) |
23 |
|
df-xr |
|- RR* = ( RR u. { +oo , -oo } ) |
24 |
23
|
sseq2i |
|- ( A C_ RR* <-> A C_ ( RR u. { +oo , -oo } ) ) |
25 |
|
3orrot |
|- ( ( A C_ RR \/ +oo e. A \/ -oo e. A ) <-> ( +oo e. A \/ -oo e. A \/ A C_ RR ) ) |
26 |
|
df-3or |
|- ( ( +oo e. A \/ -oo e. A \/ A C_ RR ) <-> ( ( +oo e. A \/ -oo e. A ) \/ A C_ RR ) ) |
27 |
25 26
|
bitri |
|- ( ( A C_ RR \/ +oo e. A \/ -oo e. A ) <-> ( ( +oo e. A \/ -oo e. A ) \/ A C_ RR ) ) |
28 |
22 24 27
|
3imtr4i |
|- ( A C_ RR* -> ( A C_ RR \/ +oo e. A \/ -oo e. A ) ) |