| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recld2.1 |  |-  J = ( TopOpen ` CCfld ) | 
						
							| 2 | 1 | zcld2 |  |-  ZZ e. ( Clsd ` J ) | 
						
							| 3 |  | id |  |-  ( A C_ ZZ -> A C_ ZZ ) | 
						
							| 4 |  | zex |  |-  ZZ e. _V | 
						
							| 5 |  | difss |  |-  ( ZZ \ A ) C_ ZZ | 
						
							| 6 | 4 5 | elpwi2 |  |-  ( ZZ \ A ) e. ~P ZZ | 
						
							| 7 | 1 | zdis |  |-  ( J |`t ZZ ) = ~P ZZ | 
						
							| 8 | 6 7 | eleqtrri |  |-  ( ZZ \ A ) e. ( J |`t ZZ ) | 
						
							| 9 | 1 | cnfldtopon |  |-  J e. ( TopOn ` CC ) | 
						
							| 10 |  | zsscn |  |-  ZZ C_ CC | 
						
							| 11 |  | resttopon |  |-  ( ( J e. ( TopOn ` CC ) /\ ZZ C_ CC ) -> ( J |`t ZZ ) e. ( TopOn ` ZZ ) ) | 
						
							| 12 | 9 10 11 | mp2an |  |-  ( J |`t ZZ ) e. ( TopOn ` ZZ ) | 
						
							| 13 | 12 | topontopi |  |-  ( J |`t ZZ ) e. Top | 
						
							| 14 | 12 | toponunii |  |-  ZZ = U. ( J |`t ZZ ) | 
						
							| 15 | 14 | iscld |  |-  ( ( J |`t ZZ ) e. Top -> ( A e. ( Clsd ` ( J |`t ZZ ) ) <-> ( A C_ ZZ /\ ( ZZ \ A ) e. ( J |`t ZZ ) ) ) ) | 
						
							| 16 | 13 15 | ax-mp |  |-  ( A e. ( Clsd ` ( J |`t ZZ ) ) <-> ( A C_ ZZ /\ ( ZZ \ A ) e. ( J |`t ZZ ) ) ) | 
						
							| 17 | 3 8 16 | sylanblrc |  |-  ( A C_ ZZ -> A e. ( Clsd ` ( J |`t ZZ ) ) ) | 
						
							| 18 |  | restcldr |  |-  ( ( ZZ e. ( Clsd ` J ) /\ A e. ( Clsd ` ( J |`t ZZ ) ) ) -> A e. ( Clsd ` J ) ) | 
						
							| 19 | 2 17 18 | sylancr |  |-  ( A C_ ZZ -> A e. ( Clsd ` J ) ) |