| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recld2.1 |
|- J = ( TopOpen ` CCfld ) |
| 2 |
1
|
zcld2 |
|- ZZ e. ( Clsd ` J ) |
| 3 |
|
id |
|- ( A C_ ZZ -> A C_ ZZ ) |
| 4 |
|
zex |
|- ZZ e. _V |
| 5 |
|
difss |
|- ( ZZ \ A ) C_ ZZ |
| 6 |
4 5
|
elpwi2 |
|- ( ZZ \ A ) e. ~P ZZ |
| 7 |
1
|
zdis |
|- ( J |`t ZZ ) = ~P ZZ |
| 8 |
6 7
|
eleqtrri |
|- ( ZZ \ A ) e. ( J |`t ZZ ) |
| 9 |
1
|
cnfldtopon |
|- J e. ( TopOn ` CC ) |
| 10 |
|
zsscn |
|- ZZ C_ CC |
| 11 |
|
resttopon |
|- ( ( J e. ( TopOn ` CC ) /\ ZZ C_ CC ) -> ( J |`t ZZ ) e. ( TopOn ` ZZ ) ) |
| 12 |
9 10 11
|
mp2an |
|- ( J |`t ZZ ) e. ( TopOn ` ZZ ) |
| 13 |
12
|
topontopi |
|- ( J |`t ZZ ) e. Top |
| 14 |
12
|
toponunii |
|- ZZ = U. ( J |`t ZZ ) |
| 15 |
14
|
iscld |
|- ( ( J |`t ZZ ) e. Top -> ( A e. ( Clsd ` ( J |`t ZZ ) ) <-> ( A C_ ZZ /\ ( ZZ \ A ) e. ( J |`t ZZ ) ) ) ) |
| 16 |
13 15
|
ax-mp |
|- ( A e. ( Clsd ` ( J |`t ZZ ) ) <-> ( A C_ ZZ /\ ( ZZ \ A ) e. ( J |`t ZZ ) ) ) |
| 17 |
3 8 16
|
sylanblrc |
|- ( A C_ ZZ -> A e. ( Clsd ` ( J |`t ZZ ) ) ) |
| 18 |
|
restcldr |
|- ( ( ZZ e. ( Clsd ` J ) /\ A e. ( Clsd ` ( J |`t ZZ ) ) ) -> A e. ( Clsd ` J ) ) |
| 19 |
2 17 18
|
sylancr |
|- ( A C_ ZZ -> A e. ( Clsd ` J ) ) |