| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stle.1 |
|- A e. CH |
| 2 |
|
stle.2 |
|- B e. CH |
| 3 |
|
stm1add3.3 |
|- C e. CH |
| 4 |
|
stcl |
|- ( S e. States -> ( A e. CH -> ( S ` A ) e. RR ) ) |
| 5 |
1 4
|
mpi |
|- ( S e. States -> ( S ` A ) e. RR ) |
| 6 |
5
|
recnd |
|- ( S e. States -> ( S ` A ) e. CC ) |
| 7 |
|
stcl |
|- ( S e. States -> ( B e. CH -> ( S ` B ) e. RR ) ) |
| 8 |
2 7
|
mpi |
|- ( S e. States -> ( S ` B ) e. RR ) |
| 9 |
8
|
recnd |
|- ( S e. States -> ( S ` B ) e. CC ) |
| 10 |
|
stcl |
|- ( S e. States -> ( C e. CH -> ( S ` C ) e. RR ) ) |
| 11 |
3 10
|
mpi |
|- ( S e. States -> ( S ` C ) e. RR ) |
| 12 |
11
|
recnd |
|- ( S e. States -> ( S ` C ) e. CC ) |
| 13 |
6 9 12
|
addassd |
|- ( S e. States -> ( ( ( S ` A ) + ( S ` B ) ) + ( S ` C ) ) = ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) ) |
| 14 |
13
|
eqeq1d |
|- ( S e. States -> ( ( ( ( S ` A ) + ( S ` B ) ) + ( S ` C ) ) = 3 <-> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) = 3 ) ) |
| 15 |
|
eqcom |
|- ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) = 3 <-> 3 = ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) ) |
| 16 |
8 11
|
readdcld |
|- ( S e. States -> ( ( S ` B ) + ( S ` C ) ) e. RR ) |
| 17 |
5 16
|
readdcld |
|- ( S e. States -> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) e. RR ) |
| 18 |
|
ltne |
|- ( ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) e. RR /\ ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < 3 ) -> 3 =/= ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) ) |
| 19 |
18
|
ex |
|- ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) e. RR -> ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < 3 -> 3 =/= ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) ) ) |
| 20 |
17 19
|
syl |
|- ( S e. States -> ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < 3 -> 3 =/= ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) ) ) |
| 21 |
20
|
necon2bd |
|- ( S e. States -> ( 3 = ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) -> -. ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < 3 ) ) |
| 22 |
15 21
|
biimtrid |
|- ( S e. States -> ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) = 3 -> -. ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < 3 ) ) |
| 23 |
|
1re |
|- 1 e. RR |
| 24 |
23 23
|
readdcli |
|- ( 1 + 1 ) e. RR |
| 25 |
24
|
a1i |
|- ( S e. States -> ( 1 + 1 ) e. RR ) |
| 26 |
|
1red |
|- ( S e. States -> 1 e. RR ) |
| 27 |
|
stle1 |
|- ( S e. States -> ( B e. CH -> ( S ` B ) <_ 1 ) ) |
| 28 |
2 27
|
mpi |
|- ( S e. States -> ( S ` B ) <_ 1 ) |
| 29 |
|
stle1 |
|- ( S e. States -> ( C e. CH -> ( S ` C ) <_ 1 ) ) |
| 30 |
3 29
|
mpi |
|- ( S e. States -> ( S ` C ) <_ 1 ) |
| 31 |
8 11 26 26 28 30
|
le2addd |
|- ( S e. States -> ( ( S ` B ) + ( S ` C ) ) <_ ( 1 + 1 ) ) |
| 32 |
16 25 5 31
|
leadd2dd |
|- ( S e. States -> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) <_ ( ( S ` A ) + ( 1 + 1 ) ) ) |
| 33 |
32
|
adantr |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) <_ ( ( S ` A ) + ( 1 + 1 ) ) ) |
| 34 |
|
ltadd1 |
|- ( ( ( S ` A ) e. RR /\ 1 e. RR /\ ( 1 + 1 ) e. RR ) -> ( ( S ` A ) < 1 <-> ( ( S ` A ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) ) |
| 35 |
34
|
biimpd |
|- ( ( ( S ` A ) e. RR /\ 1 e. RR /\ ( 1 + 1 ) e. RR ) -> ( ( S ` A ) < 1 -> ( ( S ` A ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) ) |
| 36 |
5 26 25 35
|
syl3anc |
|- ( S e. States -> ( ( S ` A ) < 1 -> ( ( S ` A ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) ) |
| 37 |
36
|
imp |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) |
| 38 |
|
readdcl |
|- ( ( ( S ` A ) e. RR /\ ( 1 + 1 ) e. RR ) -> ( ( S ` A ) + ( 1 + 1 ) ) e. RR ) |
| 39 |
5 24 38
|
sylancl |
|- ( S e. States -> ( ( S ` A ) + ( 1 + 1 ) ) e. RR ) |
| 40 |
23 24
|
readdcli |
|- ( 1 + ( 1 + 1 ) ) e. RR |
| 41 |
40
|
a1i |
|- ( S e. States -> ( 1 + ( 1 + 1 ) ) e. RR ) |
| 42 |
|
lelttr |
|- ( ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) e. RR /\ ( ( S ` A ) + ( 1 + 1 ) ) e. RR /\ ( 1 + ( 1 + 1 ) ) e. RR ) -> ( ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) <_ ( ( S ` A ) + ( 1 + 1 ) ) /\ ( ( S ` A ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) -> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < ( 1 + ( 1 + 1 ) ) ) ) |
| 43 |
17 39 41 42
|
syl3anc |
|- ( S e. States -> ( ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) <_ ( ( S ` A ) + ( 1 + 1 ) ) /\ ( ( S ` A ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) -> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < ( 1 + ( 1 + 1 ) ) ) ) |
| 44 |
43
|
adantr |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) <_ ( ( S ` A ) + ( 1 + 1 ) ) /\ ( ( S ` A ) + ( 1 + 1 ) ) < ( 1 + ( 1 + 1 ) ) ) -> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < ( 1 + ( 1 + 1 ) ) ) ) |
| 45 |
33 37 44
|
mp2and |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < ( 1 + ( 1 + 1 ) ) ) |
| 46 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 47 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 48 |
47
|
oveq1i |
|- ( 2 + 1 ) = ( ( 1 + 1 ) + 1 ) |
| 49 |
|
ax-1cn |
|- 1 e. CC |
| 50 |
49 49 49
|
addassi |
|- ( ( 1 + 1 ) + 1 ) = ( 1 + ( 1 + 1 ) ) |
| 51 |
46 48 50
|
3eqtrri |
|- ( 1 + ( 1 + 1 ) ) = 3 |
| 52 |
45 51
|
breqtrdi |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < 3 ) |
| 53 |
52
|
ex |
|- ( S e. States -> ( ( S ` A ) < 1 -> ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < 3 ) ) |
| 54 |
53
|
con3d |
|- ( S e. States -> ( -. ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) < 3 -> -. ( S ` A ) < 1 ) ) |
| 55 |
|
stle1 |
|- ( S e. States -> ( A e. CH -> ( S ` A ) <_ 1 ) ) |
| 56 |
1 55
|
mpi |
|- ( S e. States -> ( S ` A ) <_ 1 ) |
| 57 |
|
leloe |
|- ( ( ( S ` A ) e. RR /\ 1 e. RR ) -> ( ( S ` A ) <_ 1 <-> ( ( S ` A ) < 1 \/ ( S ` A ) = 1 ) ) ) |
| 58 |
5 23 57
|
sylancl |
|- ( S e. States -> ( ( S ` A ) <_ 1 <-> ( ( S ` A ) < 1 \/ ( S ` A ) = 1 ) ) ) |
| 59 |
56 58
|
mpbid |
|- ( S e. States -> ( ( S ` A ) < 1 \/ ( S ` A ) = 1 ) ) |
| 60 |
59
|
ord |
|- ( S e. States -> ( -. ( S ` A ) < 1 -> ( S ` A ) = 1 ) ) |
| 61 |
22 54 60
|
3syld |
|- ( S e. States -> ( ( ( S ` A ) + ( ( S ` B ) + ( S ` C ) ) ) = 3 -> ( S ` A ) = 1 ) ) |
| 62 |
14 61
|
sylbid |
|- ( S e. States -> ( ( ( ( S ` A ) + ( S ` B ) ) + ( S ` C ) ) = 3 -> ( S ` A ) = 1 ) ) |