| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stle.1 |
|- A e. CH |
| 2 |
|
stle.2 |
|- B e. CH |
| 3 |
|
stcl |
|- ( S e. States -> ( A e. CH -> ( S ` A ) e. RR ) ) |
| 4 |
1 3
|
mpi |
|- ( S e. States -> ( S ` A ) e. RR ) |
| 5 |
|
stcl |
|- ( S e. States -> ( B e. CH -> ( S ` B ) e. RR ) ) |
| 6 |
2 5
|
mpi |
|- ( S e. States -> ( S ` B ) e. RR ) |
| 7 |
4 6
|
readdcld |
|- ( S e. States -> ( ( S ` A ) + ( S ` B ) ) e. RR ) |
| 8 |
|
ltne |
|- ( ( ( ( S ` A ) + ( S ` B ) ) e. RR /\ ( ( S ` A ) + ( S ` B ) ) < 2 ) -> 2 =/= ( ( S ` A ) + ( S ` B ) ) ) |
| 9 |
8
|
necomd |
|- ( ( ( ( S ` A ) + ( S ` B ) ) e. RR /\ ( ( S ` A ) + ( S ` B ) ) < 2 ) -> ( ( S ` A ) + ( S ` B ) ) =/= 2 ) |
| 10 |
7 9
|
sylan |
|- ( ( S e. States /\ ( ( S ` A ) + ( S ` B ) ) < 2 ) -> ( ( S ` A ) + ( S ` B ) ) =/= 2 ) |
| 11 |
10
|
ex |
|- ( S e. States -> ( ( ( S ` A ) + ( S ` B ) ) < 2 -> ( ( S ` A ) + ( S ` B ) ) =/= 2 ) ) |
| 12 |
11
|
necon2bd |
|- ( S e. States -> ( ( ( S ` A ) + ( S ` B ) ) = 2 -> -. ( ( S ` A ) + ( S ` B ) ) < 2 ) ) |
| 13 |
|
1re |
|- 1 e. RR |
| 14 |
13
|
a1i |
|- ( S e. States -> 1 e. RR ) |
| 15 |
|
stle1 |
|- ( S e. States -> ( B e. CH -> ( S ` B ) <_ 1 ) ) |
| 16 |
2 15
|
mpi |
|- ( S e. States -> ( S ` B ) <_ 1 ) |
| 17 |
6 14 4 16
|
leadd2dd |
|- ( S e. States -> ( ( S ` A ) + ( S ` B ) ) <_ ( ( S ` A ) + 1 ) ) |
| 18 |
17
|
adantr |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + ( S ` B ) ) <_ ( ( S ` A ) + 1 ) ) |
| 19 |
|
ltadd1 |
|- ( ( ( S ` A ) e. RR /\ 1 e. RR /\ 1 e. RR ) -> ( ( S ` A ) < 1 <-> ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) ) |
| 20 |
19
|
biimpd |
|- ( ( ( S ` A ) e. RR /\ 1 e. RR /\ 1 e. RR ) -> ( ( S ` A ) < 1 -> ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) ) |
| 21 |
4 14 14 20
|
syl3anc |
|- ( S e. States -> ( ( S ` A ) < 1 -> ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) ) |
| 22 |
21
|
imp |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) |
| 23 |
|
readdcl |
|- ( ( ( S ` A ) e. RR /\ 1 e. RR ) -> ( ( S ` A ) + 1 ) e. RR ) |
| 24 |
4 13 23
|
sylancl |
|- ( S e. States -> ( ( S ` A ) + 1 ) e. RR ) |
| 25 |
13 13
|
readdcli |
|- ( 1 + 1 ) e. RR |
| 26 |
25
|
a1i |
|- ( S e. States -> ( 1 + 1 ) e. RR ) |
| 27 |
|
lelttr |
|- ( ( ( ( S ` A ) + ( S ` B ) ) e. RR /\ ( ( S ` A ) + 1 ) e. RR /\ ( 1 + 1 ) e. RR ) -> ( ( ( ( S ` A ) + ( S ` B ) ) <_ ( ( S ` A ) + 1 ) /\ ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) -> ( ( S ` A ) + ( S ` B ) ) < ( 1 + 1 ) ) ) |
| 28 |
7 24 26 27
|
syl3anc |
|- ( S e. States -> ( ( ( ( S ` A ) + ( S ` B ) ) <_ ( ( S ` A ) + 1 ) /\ ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) -> ( ( S ` A ) + ( S ` B ) ) < ( 1 + 1 ) ) ) |
| 29 |
28
|
adantr |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( ( ( S ` A ) + ( S ` B ) ) <_ ( ( S ` A ) + 1 ) /\ ( ( S ` A ) + 1 ) < ( 1 + 1 ) ) -> ( ( S ` A ) + ( S ` B ) ) < ( 1 + 1 ) ) ) |
| 30 |
18 22 29
|
mp2and |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + ( S ` B ) ) < ( 1 + 1 ) ) |
| 31 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 32 |
30 31
|
breqtrrdi |
|- ( ( S e. States /\ ( S ` A ) < 1 ) -> ( ( S ` A ) + ( S ` B ) ) < 2 ) |
| 33 |
32
|
ex |
|- ( S e. States -> ( ( S ` A ) < 1 -> ( ( S ` A ) + ( S ` B ) ) < 2 ) ) |
| 34 |
33
|
con3d |
|- ( S e. States -> ( -. ( ( S ` A ) + ( S ` B ) ) < 2 -> -. ( S ` A ) < 1 ) ) |
| 35 |
|
stle1 |
|- ( S e. States -> ( A e. CH -> ( S ` A ) <_ 1 ) ) |
| 36 |
1 35
|
mpi |
|- ( S e. States -> ( S ` A ) <_ 1 ) |
| 37 |
|
leloe |
|- ( ( ( S ` A ) e. RR /\ 1 e. RR ) -> ( ( S ` A ) <_ 1 <-> ( ( S ` A ) < 1 \/ ( S ` A ) = 1 ) ) ) |
| 38 |
4 13 37
|
sylancl |
|- ( S e. States -> ( ( S ` A ) <_ 1 <-> ( ( S ` A ) < 1 \/ ( S ` A ) = 1 ) ) ) |
| 39 |
36 38
|
mpbid |
|- ( S e. States -> ( ( S ` A ) < 1 \/ ( S ` A ) = 1 ) ) |
| 40 |
39
|
ord |
|- ( S e. States -> ( -. ( S ` A ) < 1 -> ( S ` A ) = 1 ) ) |
| 41 |
12 34 40
|
3syld |
|- ( S e. States -> ( ( ( S ` A ) + ( S ` B ) ) = 2 -> ( S ` A ) = 1 ) ) |