| Step | Hyp | Ref | Expression | 
						
							| 1 |  | staffval.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | staffval.i |  |-  .* = ( *r ` R ) | 
						
							| 3 |  | staffval.f |  |-  .xb = ( *rf ` R ) | 
						
							| 4 |  | fveq2 |  |-  ( f = R -> ( Base ` f ) = ( Base ` R ) ) | 
						
							| 5 | 4 1 | eqtr4di |  |-  ( f = R -> ( Base ` f ) = B ) | 
						
							| 6 |  | fveq2 |  |-  ( f = R -> ( *r ` f ) = ( *r ` R ) ) | 
						
							| 7 | 6 2 | eqtr4di |  |-  ( f = R -> ( *r ` f ) = .* ) | 
						
							| 8 | 7 | fveq1d |  |-  ( f = R -> ( ( *r ` f ) ` x ) = ( .* ` x ) ) | 
						
							| 9 | 5 8 | mpteq12dv |  |-  ( f = R -> ( x e. ( Base ` f ) |-> ( ( *r ` f ) ` x ) ) = ( x e. B |-> ( .* ` x ) ) ) | 
						
							| 10 |  | df-staf |  |-  *rf = ( f e. _V |-> ( x e. ( Base ` f ) |-> ( ( *r ` f ) ` x ) ) ) | 
						
							| 11 |  | eqid |  |-  ( x e. B |-> ( .* ` x ) ) = ( x e. B |-> ( .* ` x ) ) | 
						
							| 12 |  | fvrn0 |  |-  ( .* ` x ) e. ( ran .* u. { (/) } ) | 
						
							| 13 | 12 | a1i |  |-  ( x e. B -> ( .* ` x ) e. ( ran .* u. { (/) } ) ) | 
						
							| 14 | 11 13 | fmpti |  |-  ( x e. B |-> ( .* ` x ) ) : B --> ( ran .* u. { (/) } ) | 
						
							| 15 | 1 | fvexi |  |-  B e. _V | 
						
							| 16 | 2 | fvexi |  |-  .* e. _V | 
						
							| 17 | 16 | rnex |  |-  ran .* e. _V | 
						
							| 18 |  | p0ex |  |-  { (/) } e. _V | 
						
							| 19 | 17 18 | unex |  |-  ( ran .* u. { (/) } ) e. _V | 
						
							| 20 |  | fex2 |  |-  ( ( ( x e. B |-> ( .* ` x ) ) : B --> ( ran .* u. { (/) } ) /\ B e. _V /\ ( ran .* u. { (/) } ) e. _V ) -> ( x e. B |-> ( .* ` x ) ) e. _V ) | 
						
							| 21 | 14 15 19 20 | mp3an |  |-  ( x e. B |-> ( .* ` x ) ) e. _V | 
						
							| 22 | 9 10 21 | fvmpt |  |-  ( R e. _V -> ( *rf ` R ) = ( x e. B |-> ( .* ` x ) ) ) | 
						
							| 23 |  | fvprc |  |-  ( -. R e. _V -> ( *rf ` R ) = (/) ) | 
						
							| 24 |  | mpt0 |  |-  ( x e. (/) |-> ( .* ` x ) ) = (/) | 
						
							| 25 | 23 24 | eqtr4di |  |-  ( -. R e. _V -> ( *rf ` R ) = ( x e. (/) |-> ( .* ` x ) ) ) | 
						
							| 26 |  | fvprc |  |-  ( -. R e. _V -> ( Base ` R ) = (/) ) | 
						
							| 27 | 1 26 | eqtrid |  |-  ( -. R e. _V -> B = (/) ) | 
						
							| 28 | 27 | mpteq1d |  |-  ( -. R e. _V -> ( x e. B |-> ( .* ` x ) ) = ( x e. (/) |-> ( .* ` x ) ) ) | 
						
							| 29 | 25 28 | eqtr4d |  |-  ( -. R e. _V -> ( *rf ` R ) = ( x e. B |-> ( .* ` x ) ) ) | 
						
							| 30 | 22 29 | pm2.61i |  |-  ( *rf ` R ) = ( x e. B |-> ( .* ` x ) ) | 
						
							| 31 | 3 30 | eqtri |  |-  .xb = ( x e. B |-> ( .* ` x ) ) |