Step |
Hyp |
Ref |
Expression |
1 |
|
staffval.b |
|- B = ( Base ` R ) |
2 |
|
staffval.i |
|- .* = ( *r ` R ) |
3 |
|
staffval.f |
|- .xb = ( *rf ` R ) |
4 |
|
fveq2 |
|- ( f = R -> ( Base ` f ) = ( Base ` R ) ) |
5 |
4 1
|
eqtr4di |
|- ( f = R -> ( Base ` f ) = B ) |
6 |
|
fveq2 |
|- ( f = R -> ( *r ` f ) = ( *r ` R ) ) |
7 |
6 2
|
eqtr4di |
|- ( f = R -> ( *r ` f ) = .* ) |
8 |
7
|
fveq1d |
|- ( f = R -> ( ( *r ` f ) ` x ) = ( .* ` x ) ) |
9 |
5 8
|
mpteq12dv |
|- ( f = R -> ( x e. ( Base ` f ) |-> ( ( *r ` f ) ` x ) ) = ( x e. B |-> ( .* ` x ) ) ) |
10 |
|
df-staf |
|- *rf = ( f e. _V |-> ( x e. ( Base ` f ) |-> ( ( *r ` f ) ` x ) ) ) |
11 |
|
eqid |
|- ( x e. B |-> ( .* ` x ) ) = ( x e. B |-> ( .* ` x ) ) |
12 |
|
fvrn0 |
|- ( .* ` x ) e. ( ran .* u. { (/) } ) |
13 |
12
|
a1i |
|- ( x e. B -> ( .* ` x ) e. ( ran .* u. { (/) } ) ) |
14 |
11 13
|
fmpti |
|- ( x e. B |-> ( .* ` x ) ) : B --> ( ran .* u. { (/) } ) |
15 |
1
|
fvexi |
|- B e. _V |
16 |
2
|
fvexi |
|- .* e. _V |
17 |
16
|
rnex |
|- ran .* e. _V |
18 |
|
p0ex |
|- { (/) } e. _V |
19 |
17 18
|
unex |
|- ( ran .* u. { (/) } ) e. _V |
20 |
|
fex2 |
|- ( ( ( x e. B |-> ( .* ` x ) ) : B --> ( ran .* u. { (/) } ) /\ B e. _V /\ ( ran .* u. { (/) } ) e. _V ) -> ( x e. B |-> ( .* ` x ) ) e. _V ) |
21 |
14 15 19 20
|
mp3an |
|- ( x e. B |-> ( .* ` x ) ) e. _V |
22 |
9 10 21
|
fvmpt |
|- ( R e. _V -> ( *rf ` R ) = ( x e. B |-> ( .* ` x ) ) ) |
23 |
|
fvprc |
|- ( -. R e. _V -> ( *rf ` R ) = (/) ) |
24 |
|
mpt0 |
|- ( x e. (/) |-> ( .* ` x ) ) = (/) |
25 |
23 24
|
eqtr4di |
|- ( -. R e. _V -> ( *rf ` R ) = ( x e. (/) |-> ( .* ` x ) ) ) |
26 |
|
fvprc |
|- ( -. R e. _V -> ( Base ` R ) = (/) ) |
27 |
1 26
|
eqtrid |
|- ( -. R e. _V -> B = (/) ) |
28 |
27
|
mpteq1d |
|- ( -. R e. _V -> ( x e. B |-> ( .* ` x ) ) = ( x e. (/) |-> ( .* ` x ) ) ) |
29 |
25 28
|
eqtr4d |
|- ( -. R e. _V -> ( *rf ` R ) = ( x e. B |-> ( .* ` x ) ) ) |
30 |
22 29
|
pm2.61i |
|- ( *rf ` R ) = ( x e. B |-> ( .* ` x ) ) |
31 |
3 30
|
eqtri |
|- .xb = ( x e. B |-> ( .* ` x ) ) |