Metamath Proof Explorer


Theorem stafval

Description: The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses staffval.b
|- B = ( Base ` R )
staffval.i
|- .* = ( *r ` R )
staffval.f
|- .xb = ( *rf ` R )
Assertion stafval
|- ( A e. B -> ( .xb ` A ) = ( .* ` A ) )

Proof

Step Hyp Ref Expression
1 staffval.b
 |-  B = ( Base ` R )
2 staffval.i
 |-  .* = ( *r ` R )
3 staffval.f
 |-  .xb = ( *rf ` R )
4 fveq2
 |-  ( x = A -> ( .* ` x ) = ( .* ` A ) )
5 1 2 3 staffval
 |-  .xb = ( x e. B |-> ( .* ` x ) )
6 fvex
 |-  ( .* ` A ) e. _V
7 4 5 6 fvmpt
 |-  ( A e. B -> ( .xb ` A ) = ( .* ` A ) )