Description: If the (strong) ternary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 4 primes. (Contributed by AV, 27-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | stgoldbnnsum4prm | |- ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) -> A. n e. ( ZZ>= ` 2 ) E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 4 /\ n = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | stgoldbwt | |- ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) -> A. m e. Odd ( 5 < m -> m e. GoldbachOddW ) ) | |
| 2 | wtgoldbnnsum4prm | |- ( A. m e. Odd ( 5 < m -> m e. GoldbachOddW ) -> A. n e. ( ZZ>= ` 2 ) E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 4 /\ n = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | |
| 3 | 1 2 | syl | |- ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) -> A. n e. ( ZZ>= ` 2 ) E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 4 /\ n = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |