Step |
Hyp |
Ref |
Expression |
1 |
|
pm3.35 |
|- ( ( 7 < n /\ ( 7 < n -> n e. GoldbachOdd ) ) -> n e. GoldbachOdd ) |
2 |
|
gbogbow |
|- ( n e. GoldbachOdd -> n e. GoldbachOddW ) |
3 |
2
|
a1d |
|- ( n e. GoldbachOdd -> ( 5 < n -> n e. GoldbachOddW ) ) |
4 |
1 3
|
syl |
|- ( ( 7 < n /\ ( 7 < n -> n e. GoldbachOdd ) ) -> ( 5 < n -> n e. GoldbachOddW ) ) |
5 |
4
|
ex |
|- ( 7 < n -> ( ( 7 < n -> n e. GoldbachOdd ) -> ( 5 < n -> n e. GoldbachOddW ) ) ) |
6 |
5
|
a1d |
|- ( 7 < n -> ( n e. Odd -> ( ( 7 < n -> n e. GoldbachOdd ) -> ( 5 < n -> n e. GoldbachOddW ) ) ) ) |
7 |
|
oddz |
|- ( n e. Odd -> n e. ZZ ) |
8 |
7
|
zred |
|- ( n e. Odd -> n e. RR ) |
9 |
|
7re |
|- 7 e. RR |
10 |
9
|
a1i |
|- ( n e. Odd -> 7 e. RR ) |
11 |
8 10
|
lenltd |
|- ( n e. Odd -> ( n <_ 7 <-> -. 7 < n ) ) |
12 |
8 10
|
leloed |
|- ( n e. Odd -> ( n <_ 7 <-> ( n < 7 \/ n = 7 ) ) ) |
13 |
7
|
adantr |
|- ( ( n e. Odd /\ 5 < n ) -> n e. ZZ ) |
14 |
|
6nn |
|- 6 e. NN |
15 |
14
|
nnzi |
|- 6 e. ZZ |
16 |
13 15
|
jctir |
|- ( ( n e. Odd /\ 5 < n ) -> ( n e. ZZ /\ 6 e. ZZ ) ) |
17 |
16
|
adantl |
|- ( ( n < 7 /\ ( n e. Odd /\ 5 < n ) ) -> ( n e. ZZ /\ 6 e. ZZ ) ) |
18 |
|
df-7 |
|- 7 = ( 6 + 1 ) |
19 |
18
|
breq2i |
|- ( n < 7 <-> n < ( 6 + 1 ) ) |
20 |
19
|
biimpi |
|- ( n < 7 -> n < ( 6 + 1 ) ) |
21 |
|
df-6 |
|- 6 = ( 5 + 1 ) |
22 |
|
5nn |
|- 5 e. NN |
23 |
22
|
nnzi |
|- 5 e. ZZ |
24 |
|
zltp1le |
|- ( ( 5 e. ZZ /\ n e. ZZ ) -> ( 5 < n <-> ( 5 + 1 ) <_ n ) ) |
25 |
23 7 24
|
sylancr |
|- ( n e. Odd -> ( 5 < n <-> ( 5 + 1 ) <_ n ) ) |
26 |
25
|
biimpa |
|- ( ( n e. Odd /\ 5 < n ) -> ( 5 + 1 ) <_ n ) |
27 |
21 26
|
eqbrtrid |
|- ( ( n e. Odd /\ 5 < n ) -> 6 <_ n ) |
28 |
20 27
|
anim12ci |
|- ( ( n < 7 /\ ( n e. Odd /\ 5 < n ) ) -> ( 6 <_ n /\ n < ( 6 + 1 ) ) ) |
29 |
|
zgeltp1eq |
|- ( ( n e. ZZ /\ 6 e. ZZ ) -> ( ( 6 <_ n /\ n < ( 6 + 1 ) ) -> n = 6 ) ) |
30 |
17 28 29
|
sylc |
|- ( ( n < 7 /\ ( n e. Odd /\ 5 < n ) ) -> n = 6 ) |
31 |
30
|
orcd |
|- ( ( n < 7 /\ ( n e. Odd /\ 5 < n ) ) -> ( n = 6 \/ n = 7 ) ) |
32 |
31
|
ex |
|- ( n < 7 -> ( ( n e. Odd /\ 5 < n ) -> ( n = 6 \/ n = 7 ) ) ) |
33 |
|
olc |
|- ( n = 7 -> ( n = 6 \/ n = 7 ) ) |
34 |
33
|
a1d |
|- ( n = 7 -> ( ( n e. Odd /\ 5 < n ) -> ( n = 6 \/ n = 7 ) ) ) |
35 |
32 34
|
jaoi |
|- ( ( n < 7 \/ n = 7 ) -> ( ( n e. Odd /\ 5 < n ) -> ( n = 6 \/ n = 7 ) ) ) |
36 |
35
|
expd |
|- ( ( n < 7 \/ n = 7 ) -> ( n e. Odd -> ( 5 < n -> ( n = 6 \/ n = 7 ) ) ) ) |
37 |
36
|
com12 |
|- ( n e. Odd -> ( ( n < 7 \/ n = 7 ) -> ( 5 < n -> ( n = 6 \/ n = 7 ) ) ) ) |
38 |
12 37
|
sylbid |
|- ( n e. Odd -> ( n <_ 7 -> ( 5 < n -> ( n = 6 \/ n = 7 ) ) ) ) |
39 |
|
eleq1 |
|- ( n = 6 -> ( n e. Odd <-> 6 e. Odd ) ) |
40 |
|
6even |
|- 6 e. Even |
41 |
|
evennodd |
|- ( 6 e. Even -> -. 6 e. Odd ) |
42 |
41
|
pm2.21d |
|- ( 6 e. Even -> ( 6 e. Odd -> n e. GoldbachOddW ) ) |
43 |
40 42
|
mp1i |
|- ( n = 6 -> ( 6 e. Odd -> n e. GoldbachOddW ) ) |
44 |
39 43
|
sylbid |
|- ( n = 6 -> ( n e. Odd -> n e. GoldbachOddW ) ) |
45 |
|
7gbow |
|- 7 e. GoldbachOddW |
46 |
|
eleq1 |
|- ( n = 7 -> ( n e. GoldbachOddW <-> 7 e. GoldbachOddW ) ) |
47 |
45 46
|
mpbiri |
|- ( n = 7 -> n e. GoldbachOddW ) |
48 |
47
|
a1d |
|- ( n = 7 -> ( n e. Odd -> n e. GoldbachOddW ) ) |
49 |
44 48
|
jaoi |
|- ( ( n = 6 \/ n = 7 ) -> ( n e. Odd -> n e. GoldbachOddW ) ) |
50 |
49
|
com12 |
|- ( n e. Odd -> ( ( n = 6 \/ n = 7 ) -> n e. GoldbachOddW ) ) |
51 |
38 50
|
syl6d |
|- ( n e. Odd -> ( n <_ 7 -> ( 5 < n -> n e. GoldbachOddW ) ) ) |
52 |
11 51
|
sylbird |
|- ( n e. Odd -> ( -. 7 < n -> ( 5 < n -> n e. GoldbachOddW ) ) ) |
53 |
52
|
com12 |
|- ( -. 7 < n -> ( n e. Odd -> ( 5 < n -> n e. GoldbachOddW ) ) ) |
54 |
53
|
a1dd |
|- ( -. 7 < n -> ( n e. Odd -> ( ( 7 < n -> n e. GoldbachOdd ) -> ( 5 < n -> n e. GoldbachOddW ) ) ) ) |
55 |
6 54
|
pm2.61i |
|- ( n e. Odd -> ( ( 7 < n -> n e. GoldbachOdd ) -> ( 5 < n -> n e. GoldbachOddW ) ) ) |
56 |
55
|
ralimia |
|- ( A. n e. Odd ( 7 < n -> n e. GoldbachOdd ) -> A. n e. Odd ( 5 < n -> n e. GoldbachOddW ) ) |