Step |
Hyp |
Ref |
Expression |
1 |
|
stirlinglem12.1 |
|- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
2 |
|
stirlinglem12.2 |
|- B = ( n e. NN |-> ( log ` ( A ` n ) ) ) |
3 |
|
stirlinglem12.3 |
|- F = ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) |
4 |
|
1nn |
|- 1 e. NN |
5 |
1
|
stirlinglem2 |
|- ( 1 e. NN -> ( A ` 1 ) e. RR+ ) |
6 |
|
relogcl |
|- ( ( A ` 1 ) e. RR+ -> ( log ` ( A ` 1 ) ) e. RR ) |
7 |
4 5 6
|
mp2b |
|- ( log ` ( A ` 1 ) ) e. RR |
8 |
|
nfcv |
|- F/_ n 1 |
9 |
|
nfcv |
|- F/_ n log |
10 |
|
nfmpt1 |
|- F/_ n ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
11 |
1 10
|
nfcxfr |
|- F/_ n A |
12 |
11 8
|
nffv |
|- F/_ n ( A ` 1 ) |
13 |
9 12
|
nffv |
|- F/_ n ( log ` ( A ` 1 ) ) |
14 |
|
2fveq3 |
|- ( n = 1 -> ( log ` ( A ` n ) ) = ( log ` ( A ` 1 ) ) ) |
15 |
8 13 14 2
|
fvmptf |
|- ( ( 1 e. NN /\ ( log ` ( A ` 1 ) ) e. RR ) -> ( B ` 1 ) = ( log ` ( A ` 1 ) ) ) |
16 |
4 7 15
|
mp2an |
|- ( B ` 1 ) = ( log ` ( A ` 1 ) ) |
17 |
16 7
|
eqeltri |
|- ( B ` 1 ) e. RR |
18 |
17
|
a1i |
|- ( N e. NN -> ( B ` 1 ) e. RR ) |
19 |
1
|
stirlinglem2 |
|- ( N e. NN -> ( A ` N ) e. RR+ ) |
20 |
19
|
relogcld |
|- ( N e. NN -> ( log ` ( A ` N ) ) e. RR ) |
21 |
|
nfcv |
|- F/_ n N |
22 |
11 21
|
nffv |
|- F/_ n ( A ` N ) |
23 |
9 22
|
nffv |
|- F/_ n ( log ` ( A ` N ) ) |
24 |
|
2fveq3 |
|- ( n = N -> ( log ` ( A ` n ) ) = ( log ` ( A ` N ) ) ) |
25 |
21 23 24 2
|
fvmptf |
|- ( ( N e. NN /\ ( log ` ( A ` N ) ) e. RR ) -> ( B ` N ) = ( log ` ( A ` N ) ) ) |
26 |
20 25
|
mpdan |
|- ( N e. NN -> ( B ` N ) = ( log ` ( A ` N ) ) ) |
27 |
26 20
|
eqeltrd |
|- ( N e. NN -> ( B ` N ) e. RR ) |
28 |
|
4re |
|- 4 e. RR |
29 |
|
4ne0 |
|- 4 =/= 0 |
30 |
28 29
|
rereccli |
|- ( 1 / 4 ) e. RR |
31 |
30
|
a1i |
|- ( N e. NN -> ( 1 / 4 ) e. RR ) |
32 |
|
fveq2 |
|- ( k = j -> ( B ` k ) = ( B ` j ) ) |
33 |
|
fveq2 |
|- ( k = ( j + 1 ) -> ( B ` k ) = ( B ` ( j + 1 ) ) ) |
34 |
|
fveq2 |
|- ( k = 1 -> ( B ` k ) = ( B ` 1 ) ) |
35 |
|
fveq2 |
|- ( k = N -> ( B ` k ) = ( B ` N ) ) |
36 |
|
elnnuz |
|- ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) |
37 |
36
|
biimpi |
|- ( N e. NN -> N e. ( ZZ>= ` 1 ) ) |
38 |
|
elfznn |
|- ( k e. ( 1 ... N ) -> k e. NN ) |
39 |
1
|
stirlinglem2 |
|- ( k e. NN -> ( A ` k ) e. RR+ ) |
40 |
38 39
|
syl |
|- ( k e. ( 1 ... N ) -> ( A ` k ) e. RR+ ) |
41 |
40
|
relogcld |
|- ( k e. ( 1 ... N ) -> ( log ` ( A ` k ) ) e. RR ) |
42 |
|
nfcv |
|- F/_ n k |
43 |
11 42
|
nffv |
|- F/_ n ( A ` k ) |
44 |
9 43
|
nffv |
|- F/_ n ( log ` ( A ` k ) ) |
45 |
|
2fveq3 |
|- ( n = k -> ( log ` ( A ` n ) ) = ( log ` ( A ` k ) ) ) |
46 |
42 44 45 2
|
fvmptf |
|- ( ( k e. NN /\ ( log ` ( A ` k ) ) e. RR ) -> ( B ` k ) = ( log ` ( A ` k ) ) ) |
47 |
38 41 46
|
syl2anc |
|- ( k e. ( 1 ... N ) -> ( B ` k ) = ( log ` ( A ` k ) ) ) |
48 |
47
|
adantl |
|- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( B ` k ) = ( log ` ( A ` k ) ) ) |
49 |
40
|
rpcnd |
|- ( k e. ( 1 ... N ) -> ( A ` k ) e. CC ) |
50 |
49
|
adantl |
|- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( A ` k ) e. CC ) |
51 |
39
|
rpne0d |
|- ( k e. NN -> ( A ` k ) =/= 0 ) |
52 |
38 51
|
syl |
|- ( k e. ( 1 ... N ) -> ( A ` k ) =/= 0 ) |
53 |
52
|
adantl |
|- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( A ` k ) =/= 0 ) |
54 |
50 53
|
logcld |
|- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( log ` ( A ` k ) ) e. CC ) |
55 |
48 54
|
eqeltrd |
|- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( B ` k ) e. CC ) |
56 |
32 33 34 35 37 55
|
telfsumo |
|- ( N e. NN -> sum_ j e. ( 1 ..^ N ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) = ( ( B ` 1 ) - ( B ` N ) ) ) |
57 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
58 |
|
fzoval |
|- ( N e. ZZ -> ( 1 ..^ N ) = ( 1 ... ( N - 1 ) ) ) |
59 |
57 58
|
syl |
|- ( N e. NN -> ( 1 ..^ N ) = ( 1 ... ( N - 1 ) ) ) |
60 |
59
|
sumeq1d |
|- ( N e. NN -> sum_ j e. ( 1 ..^ N ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) = sum_ j e. ( 1 ... ( N - 1 ) ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) ) |
61 |
56 60
|
eqtr3d |
|- ( N e. NN -> ( ( B ` 1 ) - ( B ` N ) ) = sum_ j e. ( 1 ... ( N - 1 ) ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) ) |
62 |
|
fzfid |
|- ( N e. NN -> ( 1 ... ( N - 1 ) ) e. Fin ) |
63 |
|
elfznn |
|- ( j e. ( 1 ... ( N - 1 ) ) -> j e. NN ) |
64 |
63
|
adantl |
|- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> j e. NN ) |
65 |
1
|
stirlinglem2 |
|- ( j e. NN -> ( A ` j ) e. RR+ ) |
66 |
65
|
relogcld |
|- ( j e. NN -> ( log ` ( A ` j ) ) e. RR ) |
67 |
|
nfcv |
|- F/_ n j |
68 |
11 67
|
nffv |
|- F/_ n ( A ` j ) |
69 |
9 68
|
nffv |
|- F/_ n ( log ` ( A ` j ) ) |
70 |
|
2fveq3 |
|- ( n = j -> ( log ` ( A ` n ) ) = ( log ` ( A ` j ) ) ) |
71 |
67 69 70 2
|
fvmptf |
|- ( ( j e. NN /\ ( log ` ( A ` j ) ) e. RR ) -> ( B ` j ) = ( log ` ( A ` j ) ) ) |
72 |
66 71
|
mpdan |
|- ( j e. NN -> ( B ` j ) = ( log ` ( A ` j ) ) ) |
73 |
72 66
|
eqeltrd |
|- ( j e. NN -> ( B ` j ) e. RR ) |
74 |
64 73
|
syl |
|- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( B ` j ) e. RR ) |
75 |
|
peano2nn |
|- ( j e. NN -> ( j + 1 ) e. NN ) |
76 |
1
|
stirlinglem2 |
|- ( ( j + 1 ) e. NN -> ( A ` ( j + 1 ) ) e. RR+ ) |
77 |
75 76
|
syl |
|- ( j e. NN -> ( A ` ( j + 1 ) ) e. RR+ ) |
78 |
77
|
relogcld |
|- ( j e. NN -> ( log ` ( A ` ( j + 1 ) ) ) e. RR ) |
79 |
|
nfcv |
|- F/_ n ( j + 1 ) |
80 |
11 79
|
nffv |
|- F/_ n ( A ` ( j + 1 ) ) |
81 |
9 80
|
nffv |
|- F/_ n ( log ` ( A ` ( j + 1 ) ) ) |
82 |
|
2fveq3 |
|- ( n = ( j + 1 ) -> ( log ` ( A ` n ) ) = ( log ` ( A ` ( j + 1 ) ) ) ) |
83 |
79 81 82 2
|
fvmptf |
|- ( ( ( j + 1 ) e. NN /\ ( log ` ( A ` ( j + 1 ) ) ) e. RR ) -> ( B ` ( j + 1 ) ) = ( log ` ( A ` ( j + 1 ) ) ) ) |
84 |
75 78 83
|
syl2anc |
|- ( j e. NN -> ( B ` ( j + 1 ) ) = ( log ` ( A ` ( j + 1 ) ) ) ) |
85 |
84 78
|
eqeltrd |
|- ( j e. NN -> ( B ` ( j + 1 ) ) e. RR ) |
86 |
63 85
|
syl |
|- ( j e. ( 1 ... ( N - 1 ) ) -> ( B ` ( j + 1 ) ) e. RR ) |
87 |
86
|
adantl |
|- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( B ` ( j + 1 ) ) e. RR ) |
88 |
74 87
|
resubcld |
|- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( ( B ` j ) - ( B ` ( j + 1 ) ) ) e. RR ) |
89 |
62 88
|
fsumrecl |
|- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) e. RR ) |
90 |
30
|
a1i |
|- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( 1 / 4 ) e. RR ) |
91 |
63
|
nnred |
|- ( j e. ( 1 ... ( N - 1 ) ) -> j e. RR ) |
92 |
|
1red |
|- ( j e. ( 1 ... ( N - 1 ) ) -> 1 e. RR ) |
93 |
91 92
|
readdcld |
|- ( j e. ( 1 ... ( N - 1 ) ) -> ( j + 1 ) e. RR ) |
94 |
91 93
|
remulcld |
|- ( j e. ( 1 ... ( N - 1 ) ) -> ( j x. ( j + 1 ) ) e. RR ) |
95 |
91
|
recnd |
|- ( j e. ( 1 ... ( N - 1 ) ) -> j e. CC ) |
96 |
|
1cnd |
|- ( j e. ( 1 ... ( N - 1 ) ) -> 1 e. CC ) |
97 |
95 96
|
addcld |
|- ( j e. ( 1 ... ( N - 1 ) ) -> ( j + 1 ) e. CC ) |
98 |
63
|
nnne0d |
|- ( j e. ( 1 ... ( N - 1 ) ) -> j =/= 0 ) |
99 |
75
|
nnne0d |
|- ( j e. NN -> ( j + 1 ) =/= 0 ) |
100 |
63 99
|
syl |
|- ( j e. ( 1 ... ( N - 1 ) ) -> ( j + 1 ) =/= 0 ) |
101 |
95 97 98 100
|
mulne0d |
|- ( j e. ( 1 ... ( N - 1 ) ) -> ( j x. ( j + 1 ) ) =/= 0 ) |
102 |
94 101
|
rereccld |
|- ( j e. ( 1 ... ( N - 1 ) ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) |
103 |
102
|
adantl |
|- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) |
104 |
90 103
|
remulcld |
|- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) e. RR ) |
105 |
62 104
|
fsumrecl |
|- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) e. RR ) |
106 |
|
eqid |
|- ( i e. NN |-> ( ( 1 / ( ( 2 x. i ) + 1 ) ) x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) ^ ( 2 x. i ) ) ) ) = ( i e. NN |-> ( ( 1 / ( ( 2 x. i ) + 1 ) ) x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) ^ ( 2 x. i ) ) ) ) |
107 |
|
eqid |
|- ( i e. NN |-> ( ( 1 / ( ( ( 2 x. j ) + 1 ) ^ 2 ) ) ^ i ) ) = ( i e. NN |-> ( ( 1 / ( ( ( 2 x. j ) + 1 ) ^ 2 ) ) ^ i ) ) |
108 |
1 2 106 107
|
stirlinglem10 |
|- ( j e. NN -> ( ( B ` j ) - ( B ` ( j + 1 ) ) ) <_ ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) ) |
109 |
64 108
|
syl |
|- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( ( B ` j ) - ( B ` ( j + 1 ) ) ) <_ ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) ) |
110 |
62 88 104 109
|
fsumle |
|- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) <_ sum_ j e. ( 1 ... ( N - 1 ) ) ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) ) |
111 |
62 103
|
fsumrecl |
|- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) |
112 |
|
1red |
|- ( N e. NN -> 1 e. RR ) |
113 |
|
4pos |
|- 0 < 4 |
114 |
28 113
|
elrpii |
|- 4 e. RR+ |
115 |
114
|
a1i |
|- ( N e. NN -> 4 e. RR+ ) |
116 |
|
0red |
|- ( N e. NN -> 0 e. RR ) |
117 |
|
0lt1 |
|- 0 < 1 |
118 |
117
|
a1i |
|- ( N e. NN -> 0 < 1 ) |
119 |
116 112 118
|
ltled |
|- ( N e. NN -> 0 <_ 1 ) |
120 |
112 115 119
|
divge0d |
|- ( N e. NN -> 0 <_ ( 1 / 4 ) ) |
121 |
|
eqid |
|- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
122 |
|
eluznn |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> j e. NN ) |
123 |
3
|
a1i |
|- ( j e. NN -> F = ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) ) |
124 |
|
simpr |
|- ( ( j e. NN /\ n = j ) -> n = j ) |
125 |
124
|
oveq1d |
|- ( ( j e. NN /\ n = j ) -> ( n + 1 ) = ( j + 1 ) ) |
126 |
124 125
|
oveq12d |
|- ( ( j e. NN /\ n = j ) -> ( n x. ( n + 1 ) ) = ( j x. ( j + 1 ) ) ) |
127 |
126
|
oveq2d |
|- ( ( j e. NN /\ n = j ) -> ( 1 / ( n x. ( n + 1 ) ) ) = ( 1 / ( j x. ( j + 1 ) ) ) ) |
128 |
|
id |
|- ( j e. NN -> j e. NN ) |
129 |
|
nnre |
|- ( j e. NN -> j e. RR ) |
130 |
|
1red |
|- ( j e. NN -> 1 e. RR ) |
131 |
129 130
|
readdcld |
|- ( j e. NN -> ( j + 1 ) e. RR ) |
132 |
129 131
|
remulcld |
|- ( j e. NN -> ( j x. ( j + 1 ) ) e. RR ) |
133 |
|
nncn |
|- ( j e. NN -> j e. CC ) |
134 |
|
1cnd |
|- ( j e. NN -> 1 e. CC ) |
135 |
133 134
|
addcld |
|- ( j e. NN -> ( j + 1 ) e. CC ) |
136 |
|
nnne0 |
|- ( j e. NN -> j =/= 0 ) |
137 |
133 135 136 99
|
mulne0d |
|- ( j e. NN -> ( j x. ( j + 1 ) ) =/= 0 ) |
138 |
132 137
|
rereccld |
|- ( j e. NN -> ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) |
139 |
123 127 128 138
|
fvmptd |
|- ( j e. NN -> ( F ` j ) = ( 1 / ( j x. ( j + 1 ) ) ) ) |
140 |
122 139
|
syl |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( F ` j ) = ( 1 / ( j x. ( j + 1 ) ) ) ) |
141 |
122
|
nnred |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> j e. RR ) |
142 |
|
1red |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> 1 e. RR ) |
143 |
141 142
|
readdcld |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j + 1 ) e. RR ) |
144 |
141 143
|
remulcld |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j x. ( j + 1 ) ) e. RR ) |
145 |
141
|
recnd |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> j e. CC ) |
146 |
|
1cnd |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> 1 e. CC ) |
147 |
145 146
|
addcld |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j + 1 ) e. CC ) |
148 |
122
|
nnne0d |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> j =/= 0 ) |
149 |
122 99
|
syl |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j + 1 ) =/= 0 ) |
150 |
145 147 148 149
|
mulne0d |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j x. ( j + 1 ) ) =/= 0 ) |
151 |
144 150
|
rereccld |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) |
152 |
|
seqeq1 |
|- ( N = 1 -> seq N ( + , F ) = seq 1 ( + , F ) ) |
153 |
3
|
trireciplem |
|- seq 1 ( + , F ) ~~> 1 |
154 |
|
climrel |
|- Rel ~~> |
155 |
154
|
releldmi |
|- ( seq 1 ( + , F ) ~~> 1 -> seq 1 ( + , F ) e. dom ~~> ) |
156 |
153 155
|
mp1i |
|- ( N = 1 -> seq 1 ( + , F ) e. dom ~~> ) |
157 |
152 156
|
eqeltrd |
|- ( N = 1 -> seq N ( + , F ) e. dom ~~> ) |
158 |
157
|
adantl |
|- ( ( N e. NN /\ N = 1 ) -> seq N ( + , F ) e. dom ~~> ) |
159 |
|
simpl |
|- ( ( N e. NN /\ -. N = 1 ) -> N e. NN ) |
160 |
|
simpr |
|- ( ( N e. NN /\ -. N = 1 ) -> -. N = 1 ) |
161 |
|
elnn1uz2 |
|- ( N e. NN <-> ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) ) |
162 |
159 161
|
sylib |
|- ( ( N e. NN /\ -. N = 1 ) -> ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) ) |
163 |
162
|
ord |
|- ( ( N e. NN /\ -. N = 1 ) -> ( -. N = 1 -> N e. ( ZZ>= ` 2 ) ) ) |
164 |
160 163
|
mpd |
|- ( ( N e. NN /\ -. N = 1 ) -> N e. ( ZZ>= ` 2 ) ) |
165 |
|
uz2m1nn |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) |
166 |
164 165
|
syl |
|- ( ( N e. NN /\ -. N = 1 ) -> ( N - 1 ) e. NN ) |
167 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
168 |
167
|
adantr |
|- ( ( N e. NN /\ ( N - 1 ) e. NN ) -> N e. CC ) |
169 |
|
1cnd |
|- ( ( N e. NN /\ ( N - 1 ) e. NN ) -> 1 e. CC ) |
170 |
168 169
|
npcand |
|- ( ( N e. NN /\ ( N - 1 ) e. NN ) -> ( ( N - 1 ) + 1 ) = N ) |
171 |
170
|
eqcomd |
|- ( ( N e. NN /\ ( N - 1 ) e. NN ) -> N = ( ( N - 1 ) + 1 ) ) |
172 |
171
|
seqeq1d |
|- ( ( N e. NN /\ ( N - 1 ) e. NN ) -> seq N ( + , F ) = seq ( ( N - 1 ) + 1 ) ( + , F ) ) |
173 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
174 |
|
id |
|- ( ( N - 1 ) e. NN -> ( N - 1 ) e. NN ) |
175 |
138
|
recnd |
|- ( j e. NN -> ( 1 / ( j x. ( j + 1 ) ) ) e. CC ) |
176 |
139 175
|
eqeltrd |
|- ( j e. NN -> ( F ` j ) e. CC ) |
177 |
176
|
adantl |
|- ( ( ( N - 1 ) e. NN /\ j e. NN ) -> ( F ` j ) e. CC ) |
178 |
153
|
a1i |
|- ( ( N - 1 ) e. NN -> seq 1 ( + , F ) ~~> 1 ) |
179 |
173 174 177 178
|
clim2ser |
|- ( ( N - 1 ) e. NN -> seq ( ( N - 1 ) + 1 ) ( + , F ) ~~> ( 1 - ( seq 1 ( + , F ) ` ( N - 1 ) ) ) ) |
180 |
179
|
adantl |
|- ( ( N e. NN /\ ( N - 1 ) e. NN ) -> seq ( ( N - 1 ) + 1 ) ( + , F ) ~~> ( 1 - ( seq 1 ( + , F ) ` ( N - 1 ) ) ) ) |
181 |
172 180
|
eqbrtrd |
|- ( ( N e. NN /\ ( N - 1 ) e. NN ) -> seq N ( + , F ) ~~> ( 1 - ( seq 1 ( + , F ) ` ( N - 1 ) ) ) ) |
182 |
154
|
releldmi |
|- ( seq N ( + , F ) ~~> ( 1 - ( seq 1 ( + , F ) ` ( N - 1 ) ) ) -> seq N ( + , F ) e. dom ~~> ) |
183 |
181 182
|
syl |
|- ( ( N e. NN /\ ( N - 1 ) e. NN ) -> seq N ( + , F ) e. dom ~~> ) |
184 |
159 166 183
|
syl2anc |
|- ( ( N e. NN /\ -. N = 1 ) -> seq N ( + , F ) e. dom ~~> ) |
185 |
158 184
|
pm2.61dan |
|- ( N e. NN -> seq N ( + , F ) e. dom ~~> ) |
186 |
121 57 140 151 185
|
isumrecl |
|- ( N e. NN -> sum_ j e. ( ZZ>= ` N ) ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) |
187 |
122
|
nnrpd |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> j e. RR+ ) |
188 |
187
|
rpge0d |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> 0 <_ j ) |
189 |
141 188
|
ge0p1rpd |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j + 1 ) e. RR+ ) |
190 |
187 189
|
rpmulcld |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j x. ( j + 1 ) ) e. RR+ ) |
191 |
119
|
adantr |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> 0 <_ 1 ) |
192 |
142 190 191
|
divge0d |
|- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> 0 <_ ( 1 / ( j x. ( j + 1 ) ) ) ) |
193 |
121 57 140 151 185 192
|
isumge0 |
|- ( N e. NN -> 0 <_ sum_ j e. ( ZZ>= ` N ) ( 1 / ( j x. ( j + 1 ) ) ) ) |
194 |
116 186 111 193
|
leadd2dd |
|- ( N e. NN -> ( sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) + 0 ) <_ ( sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) + sum_ j e. ( ZZ>= ` N ) ( 1 / ( j x. ( j + 1 ) ) ) ) ) |
195 |
111
|
recnd |
|- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) e. CC ) |
196 |
195
|
addid1d |
|- ( N e. NN -> ( sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) + 0 ) = sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) ) |
197 |
196
|
eqcomd |
|- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) = ( sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) + 0 ) ) |
198 |
|
id |
|- ( N e. NN -> N e. NN ) |
199 |
139
|
adantl |
|- ( ( N e. NN /\ j e. NN ) -> ( F ` j ) = ( 1 / ( j x. ( j + 1 ) ) ) ) |
200 |
133
|
adantl |
|- ( ( N e. NN /\ j e. NN ) -> j e. CC ) |
201 |
|
1cnd |
|- ( ( N e. NN /\ j e. NN ) -> 1 e. CC ) |
202 |
200 201
|
addcld |
|- ( ( N e. NN /\ j e. NN ) -> ( j + 1 ) e. CC ) |
203 |
200 202
|
mulcld |
|- ( ( N e. NN /\ j e. NN ) -> ( j x. ( j + 1 ) ) e. CC ) |
204 |
136
|
adantl |
|- ( ( N e. NN /\ j e. NN ) -> j =/= 0 ) |
205 |
99
|
adantl |
|- ( ( N e. NN /\ j e. NN ) -> ( j + 1 ) =/= 0 ) |
206 |
200 202 204 205
|
mulne0d |
|- ( ( N e. NN /\ j e. NN ) -> ( j x. ( j + 1 ) ) =/= 0 ) |
207 |
203 206
|
reccld |
|- ( ( N e. NN /\ j e. NN ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. CC ) |
208 |
153 155
|
mp1i |
|- ( N e. NN -> seq 1 ( + , F ) e. dom ~~> ) |
209 |
173 121 198 199 207 208
|
isumsplit |
|- ( N e. NN -> sum_ j e. NN ( 1 / ( j x. ( j + 1 ) ) ) = ( sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) + sum_ j e. ( ZZ>= ` N ) ( 1 / ( j x. ( j + 1 ) ) ) ) ) |
210 |
194 197 209
|
3brtr4d |
|- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) <_ sum_ j e. NN ( 1 / ( j x. ( j + 1 ) ) ) ) |
211 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
212 |
139
|
adantl |
|- ( ( T. /\ j e. NN ) -> ( F ` j ) = ( 1 / ( j x. ( j + 1 ) ) ) ) |
213 |
175
|
adantl |
|- ( ( T. /\ j e. NN ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. CC ) |
214 |
153
|
a1i |
|- ( T. -> seq 1 ( + , F ) ~~> 1 ) |
215 |
173 211 212 213 214
|
isumclim |
|- ( T. -> sum_ j e. NN ( 1 / ( j x. ( j + 1 ) ) ) = 1 ) |
216 |
215
|
mptru |
|- sum_ j e. NN ( 1 / ( j x. ( j + 1 ) ) ) = 1 |
217 |
210 216
|
breqtrdi |
|- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) <_ 1 ) |
218 |
111 112 31 120 217
|
lemul2ad |
|- ( N e. NN -> ( ( 1 / 4 ) x. sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) ) <_ ( ( 1 / 4 ) x. 1 ) ) |
219 |
|
4cn |
|- 4 e. CC |
220 |
219
|
a1i |
|- ( N e. NN -> 4 e. CC ) |
221 |
113
|
a1i |
|- ( N e. NN -> 0 < 4 ) |
222 |
221
|
gt0ne0d |
|- ( N e. NN -> 4 =/= 0 ) |
223 |
220 222
|
reccld |
|- ( N e. NN -> ( 1 / 4 ) e. CC ) |
224 |
103
|
recnd |
|- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. CC ) |
225 |
62 223 224
|
fsummulc2 |
|- ( N e. NN -> ( ( 1 / 4 ) x. sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) ) = sum_ j e. ( 1 ... ( N - 1 ) ) ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) ) |
226 |
223
|
mulid1d |
|- ( N e. NN -> ( ( 1 / 4 ) x. 1 ) = ( 1 / 4 ) ) |
227 |
218 225 226
|
3brtr3d |
|- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) <_ ( 1 / 4 ) ) |
228 |
89 105 31 110 227
|
letrd |
|- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) <_ ( 1 / 4 ) ) |
229 |
61 228
|
eqbrtrd |
|- ( N e. NN -> ( ( B ` 1 ) - ( B ` N ) ) <_ ( 1 / 4 ) ) |
230 |
18 27 31 229
|
subled |
|- ( N e. NN -> ( ( B ` 1 ) - ( 1 / 4 ) ) <_ ( B ` N ) ) |