| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stirlinglem13.1 |
|- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
| 2 |
|
stirlinglem13.2 |
|- B = ( n e. NN |-> ( log ` ( A ` n ) ) ) |
| 3 |
|
vex |
|- y e. _V |
| 4 |
2
|
elrnmpt |
|- ( y e. _V -> ( y e. ran B <-> E. n e. NN y = ( log ` ( A ` n ) ) ) ) |
| 5 |
3 4
|
ax-mp |
|- ( y e. ran B <-> E. n e. NN y = ( log ` ( A ` n ) ) ) |
| 6 |
|
simpr |
|- ( ( n e. NN /\ y = ( log ` ( A ` n ) ) ) -> y = ( log ` ( A ` n ) ) ) |
| 7 |
1
|
stirlinglem2 |
|- ( n e. NN -> ( A ` n ) e. RR+ ) |
| 8 |
7
|
relogcld |
|- ( n e. NN -> ( log ` ( A ` n ) ) e. RR ) |
| 9 |
8
|
adantr |
|- ( ( n e. NN /\ y = ( log ` ( A ` n ) ) ) -> ( log ` ( A ` n ) ) e. RR ) |
| 10 |
6 9
|
eqeltrd |
|- ( ( n e. NN /\ y = ( log ` ( A ` n ) ) ) -> y e. RR ) |
| 11 |
10
|
rexlimiva |
|- ( E. n e. NN y = ( log ` ( A ` n ) ) -> y e. RR ) |
| 12 |
5 11
|
sylbi |
|- ( y e. ran B -> y e. RR ) |
| 13 |
12
|
ssriv |
|- ran B C_ RR |
| 14 |
|
1nn |
|- 1 e. NN |
| 15 |
1
|
stirlinglem2 |
|- ( 1 e. NN -> ( A ` 1 ) e. RR+ ) |
| 16 |
|
relogcl |
|- ( ( A ` 1 ) e. RR+ -> ( log ` ( A ` 1 ) ) e. RR ) |
| 17 |
14 15 16
|
mp2b |
|- ( log ` ( A ` 1 ) ) e. RR |
| 18 |
|
nfcv |
|- F/_ n 1 |
| 19 |
|
nfcv |
|- F/_ n log |
| 20 |
|
nfmpt1 |
|- F/_ n ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
| 21 |
1 20
|
nfcxfr |
|- F/_ n A |
| 22 |
21 18
|
nffv |
|- F/_ n ( A ` 1 ) |
| 23 |
19 22
|
nffv |
|- F/_ n ( log ` ( A ` 1 ) ) |
| 24 |
|
2fveq3 |
|- ( n = 1 -> ( log ` ( A ` n ) ) = ( log ` ( A ` 1 ) ) ) |
| 25 |
18 23 24 2
|
fvmptf |
|- ( ( 1 e. NN /\ ( log ` ( A ` 1 ) ) e. RR ) -> ( B ` 1 ) = ( log ` ( A ` 1 ) ) ) |
| 26 |
14 17 25
|
mp2an |
|- ( B ` 1 ) = ( log ` ( A ` 1 ) ) |
| 27 |
|
2fveq3 |
|- ( j = 1 -> ( log ` ( A ` j ) ) = ( log ` ( A ` 1 ) ) ) |
| 28 |
27
|
rspceeqv |
|- ( ( 1 e. NN /\ ( B ` 1 ) = ( log ` ( A ` 1 ) ) ) -> E. j e. NN ( B ` 1 ) = ( log ` ( A ` j ) ) ) |
| 29 |
14 26 28
|
mp2an |
|- E. j e. NN ( B ` 1 ) = ( log ` ( A ` j ) ) |
| 30 |
26 17
|
eqeltri |
|- ( B ` 1 ) e. RR |
| 31 |
|
nfcv |
|- F/_ j ( log ` ( A ` n ) ) |
| 32 |
|
nfcv |
|- F/_ n j |
| 33 |
21 32
|
nffv |
|- F/_ n ( A ` j ) |
| 34 |
19 33
|
nffv |
|- F/_ n ( log ` ( A ` j ) ) |
| 35 |
|
2fveq3 |
|- ( n = j -> ( log ` ( A ` n ) ) = ( log ` ( A ` j ) ) ) |
| 36 |
31 34 35
|
cbvmpt |
|- ( n e. NN |-> ( log ` ( A ` n ) ) ) = ( j e. NN |-> ( log ` ( A ` j ) ) ) |
| 37 |
2 36
|
eqtri |
|- B = ( j e. NN |-> ( log ` ( A ` j ) ) ) |
| 38 |
37
|
elrnmpt |
|- ( ( B ` 1 ) e. RR -> ( ( B ` 1 ) e. ran B <-> E. j e. NN ( B ` 1 ) = ( log ` ( A ` j ) ) ) ) |
| 39 |
30 38
|
ax-mp |
|- ( ( B ` 1 ) e. ran B <-> E. j e. NN ( B ` 1 ) = ( log ` ( A ` j ) ) ) |
| 40 |
29 39
|
mpbir |
|- ( B ` 1 ) e. ran B |
| 41 |
40
|
ne0ii |
|- ran B =/= (/) |
| 42 |
|
4re |
|- 4 e. RR |
| 43 |
|
4ne0 |
|- 4 =/= 0 |
| 44 |
42 43
|
rereccli |
|- ( 1 / 4 ) e. RR |
| 45 |
30 44
|
resubcli |
|- ( ( B ` 1 ) - ( 1 / 4 ) ) e. RR |
| 46 |
|
eqid |
|- ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) = ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) |
| 47 |
1 2 46
|
stirlinglem12 |
|- ( j e. NN -> ( ( B ` 1 ) - ( 1 / 4 ) ) <_ ( B ` j ) ) |
| 48 |
47
|
rgen |
|- A. j e. NN ( ( B ` 1 ) - ( 1 / 4 ) ) <_ ( B ` j ) |
| 49 |
|
breq1 |
|- ( x = ( ( B ` 1 ) - ( 1 / 4 ) ) -> ( x <_ ( B ` j ) <-> ( ( B ` 1 ) - ( 1 / 4 ) ) <_ ( B ` j ) ) ) |
| 50 |
49
|
ralbidv |
|- ( x = ( ( B ` 1 ) - ( 1 / 4 ) ) -> ( A. j e. NN x <_ ( B ` j ) <-> A. j e. NN ( ( B ` 1 ) - ( 1 / 4 ) ) <_ ( B ` j ) ) ) |
| 51 |
50
|
rspcev |
|- ( ( ( ( B ` 1 ) - ( 1 / 4 ) ) e. RR /\ A. j e. NN ( ( B ` 1 ) - ( 1 / 4 ) ) <_ ( B ` j ) ) -> E. x e. RR A. j e. NN x <_ ( B ` j ) ) |
| 52 |
45 48 51
|
mp2an |
|- E. x e. RR A. j e. NN x <_ ( B ` j ) |
| 53 |
|
simpr |
|- ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) -> y e. ran B ) |
| 54 |
8
|
rgen |
|- A. n e. NN ( log ` ( A ` n ) ) e. RR |
| 55 |
2
|
fnmpt |
|- ( A. n e. NN ( log ` ( A ` n ) ) e. RR -> B Fn NN ) |
| 56 |
|
fvelrnb |
|- ( B Fn NN -> ( y e. ran B <-> E. j e. NN ( B ` j ) = y ) ) |
| 57 |
54 55 56
|
mp2b |
|- ( y e. ran B <-> E. j e. NN ( B ` j ) = y ) |
| 58 |
53 57
|
sylib |
|- ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) -> E. j e. NN ( B ` j ) = y ) |
| 59 |
|
nfra1 |
|- F/ j A. j e. NN x <_ ( B ` j ) |
| 60 |
|
nfv |
|- F/ j y e. ran B |
| 61 |
59 60
|
nfan |
|- F/ j ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) |
| 62 |
|
nfv |
|- F/ j x <_ y |
| 63 |
|
simp1l |
|- ( ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) /\ j e. NN /\ ( B ` j ) = y ) -> A. j e. NN x <_ ( B ` j ) ) |
| 64 |
|
simp2 |
|- ( ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) /\ j e. NN /\ ( B ` j ) = y ) -> j e. NN ) |
| 65 |
|
rsp |
|- ( A. j e. NN x <_ ( B ` j ) -> ( j e. NN -> x <_ ( B ` j ) ) ) |
| 66 |
63 64 65
|
sylc |
|- ( ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) /\ j e. NN /\ ( B ` j ) = y ) -> x <_ ( B ` j ) ) |
| 67 |
|
simp3 |
|- ( ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) /\ j e. NN /\ ( B ` j ) = y ) -> ( B ` j ) = y ) |
| 68 |
66 67
|
breqtrd |
|- ( ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) /\ j e. NN /\ ( B ` j ) = y ) -> x <_ y ) |
| 69 |
68
|
3exp |
|- ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) -> ( j e. NN -> ( ( B ` j ) = y -> x <_ y ) ) ) |
| 70 |
61 62 69
|
rexlimd |
|- ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) -> ( E. j e. NN ( B ` j ) = y -> x <_ y ) ) |
| 71 |
58 70
|
mpd |
|- ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) -> x <_ y ) |
| 72 |
71
|
ralrimiva |
|- ( A. j e. NN x <_ ( B ` j ) -> A. y e. ran B x <_ y ) |
| 73 |
72
|
reximi |
|- ( E. x e. RR A. j e. NN x <_ ( B ` j ) -> E. x e. RR A. y e. ran B x <_ y ) |
| 74 |
52 73
|
ax-mp |
|- E. x e. RR A. y e. ran B x <_ y |
| 75 |
|
infrecl |
|- ( ( ran B C_ RR /\ ran B =/= (/) /\ E. x e. RR A. y e. ran B x <_ y ) -> inf ( ran B , RR , < ) e. RR ) |
| 76 |
13 41 74 75
|
mp3an |
|- inf ( ran B , RR , < ) e. RR |
| 77 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 78 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
| 79 |
2 8
|
fmpti |
|- B : NN --> RR |
| 80 |
79
|
a1i |
|- ( T. -> B : NN --> RR ) |
| 81 |
|
peano2nn |
|- ( j e. NN -> ( j + 1 ) e. NN ) |
| 82 |
1
|
a1i |
|- ( j e. NN -> A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ) |
| 83 |
|
simpr |
|- ( ( j e. NN /\ n = ( j + 1 ) ) -> n = ( j + 1 ) ) |
| 84 |
83
|
fveq2d |
|- ( ( j e. NN /\ n = ( j + 1 ) ) -> ( ! ` n ) = ( ! ` ( j + 1 ) ) ) |
| 85 |
83
|
oveq2d |
|- ( ( j e. NN /\ n = ( j + 1 ) ) -> ( 2 x. n ) = ( 2 x. ( j + 1 ) ) ) |
| 86 |
85
|
fveq2d |
|- ( ( j e. NN /\ n = ( j + 1 ) ) -> ( sqrt ` ( 2 x. n ) ) = ( sqrt ` ( 2 x. ( j + 1 ) ) ) ) |
| 87 |
83
|
oveq1d |
|- ( ( j e. NN /\ n = ( j + 1 ) ) -> ( n / _e ) = ( ( j + 1 ) / _e ) ) |
| 88 |
87 83
|
oveq12d |
|- ( ( j e. NN /\ n = ( j + 1 ) ) -> ( ( n / _e ) ^ n ) = ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) ) |
| 89 |
86 88
|
oveq12d |
|- ( ( j e. NN /\ n = ( j + 1 ) ) -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) = ( ( sqrt ` ( 2 x. ( j + 1 ) ) ) x. ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) ) ) |
| 90 |
84 89
|
oveq12d |
|- ( ( j e. NN /\ n = ( j + 1 ) ) -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ! ` ( j + 1 ) ) / ( ( sqrt ` ( 2 x. ( j + 1 ) ) ) x. ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) ) ) ) |
| 91 |
81
|
nnnn0d |
|- ( j e. NN -> ( j + 1 ) e. NN0 ) |
| 92 |
|
faccl |
|- ( ( j + 1 ) e. NN0 -> ( ! ` ( j + 1 ) ) e. NN ) |
| 93 |
|
nncn |
|- ( ( ! ` ( j + 1 ) ) e. NN -> ( ! ` ( j + 1 ) ) e. CC ) |
| 94 |
91 92 93
|
3syl |
|- ( j e. NN -> ( ! ` ( j + 1 ) ) e. CC ) |
| 95 |
|
2cnd |
|- ( j e. NN -> 2 e. CC ) |
| 96 |
|
nncn |
|- ( j e. NN -> j e. CC ) |
| 97 |
|
1cnd |
|- ( j e. NN -> 1 e. CC ) |
| 98 |
96 97
|
addcld |
|- ( j e. NN -> ( j + 1 ) e. CC ) |
| 99 |
95 98
|
mulcld |
|- ( j e. NN -> ( 2 x. ( j + 1 ) ) e. CC ) |
| 100 |
99
|
sqrtcld |
|- ( j e. NN -> ( sqrt ` ( 2 x. ( j + 1 ) ) ) e. CC ) |
| 101 |
|
ere |
|- _e e. RR |
| 102 |
101
|
recni |
|- _e e. CC |
| 103 |
102
|
a1i |
|- ( j e. NN -> _e e. CC ) |
| 104 |
|
0re |
|- 0 e. RR |
| 105 |
|
epos |
|- 0 < _e |
| 106 |
104 105
|
gtneii |
|- _e =/= 0 |
| 107 |
106
|
a1i |
|- ( j e. NN -> _e =/= 0 ) |
| 108 |
98 103 107
|
divcld |
|- ( j e. NN -> ( ( j + 1 ) / _e ) e. CC ) |
| 109 |
108 91
|
expcld |
|- ( j e. NN -> ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) e. CC ) |
| 110 |
100 109
|
mulcld |
|- ( j e. NN -> ( ( sqrt ` ( 2 x. ( j + 1 ) ) ) x. ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) ) e. CC ) |
| 111 |
|
2rp |
|- 2 e. RR+ |
| 112 |
111
|
a1i |
|- ( j e. NN -> 2 e. RR+ ) |
| 113 |
|
nnre |
|- ( j e. NN -> j e. RR ) |
| 114 |
104
|
a1i |
|- ( j e. NN -> 0 e. RR ) |
| 115 |
|
1red |
|- ( j e. NN -> 1 e. RR ) |
| 116 |
|
0le1 |
|- 0 <_ 1 |
| 117 |
116
|
a1i |
|- ( j e. NN -> 0 <_ 1 ) |
| 118 |
|
nnge1 |
|- ( j e. NN -> 1 <_ j ) |
| 119 |
114 115 113 117 118
|
letrd |
|- ( j e. NN -> 0 <_ j ) |
| 120 |
113 119
|
ge0p1rpd |
|- ( j e. NN -> ( j + 1 ) e. RR+ ) |
| 121 |
112 120
|
rpmulcld |
|- ( j e. NN -> ( 2 x. ( j + 1 ) ) e. RR+ ) |
| 122 |
121
|
sqrtgt0d |
|- ( j e. NN -> 0 < ( sqrt ` ( 2 x. ( j + 1 ) ) ) ) |
| 123 |
122
|
gt0ne0d |
|- ( j e. NN -> ( sqrt ` ( 2 x. ( j + 1 ) ) ) =/= 0 ) |
| 124 |
81
|
nnne0d |
|- ( j e. NN -> ( j + 1 ) =/= 0 ) |
| 125 |
98 103 124 107
|
divne0d |
|- ( j e. NN -> ( ( j + 1 ) / _e ) =/= 0 ) |
| 126 |
|
nnz |
|- ( j e. NN -> j e. ZZ ) |
| 127 |
126
|
peano2zd |
|- ( j e. NN -> ( j + 1 ) e. ZZ ) |
| 128 |
108 125 127
|
expne0d |
|- ( j e. NN -> ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) =/= 0 ) |
| 129 |
100 109 123 128
|
mulne0d |
|- ( j e. NN -> ( ( sqrt ` ( 2 x. ( j + 1 ) ) ) x. ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) ) =/= 0 ) |
| 130 |
94 110 129
|
divcld |
|- ( j e. NN -> ( ( ! ` ( j + 1 ) ) / ( ( sqrt ` ( 2 x. ( j + 1 ) ) ) x. ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) ) ) e. CC ) |
| 131 |
82 90 81 130
|
fvmptd |
|- ( j e. NN -> ( A ` ( j + 1 ) ) = ( ( ! ` ( j + 1 ) ) / ( ( sqrt ` ( 2 x. ( j + 1 ) ) ) x. ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) ) ) ) |
| 132 |
|
nnrp |
|- ( ( ! ` ( j + 1 ) ) e. NN -> ( ! ` ( j + 1 ) ) e. RR+ ) |
| 133 |
91 92 132
|
3syl |
|- ( j e. NN -> ( ! ` ( j + 1 ) ) e. RR+ ) |
| 134 |
121
|
rpsqrtcld |
|- ( j e. NN -> ( sqrt ` ( 2 x. ( j + 1 ) ) ) e. RR+ ) |
| 135 |
|
epr |
|- _e e. RR+ |
| 136 |
135
|
a1i |
|- ( j e. NN -> _e e. RR+ ) |
| 137 |
120 136
|
rpdivcld |
|- ( j e. NN -> ( ( j + 1 ) / _e ) e. RR+ ) |
| 138 |
137 127
|
rpexpcld |
|- ( j e. NN -> ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) e. RR+ ) |
| 139 |
134 138
|
rpmulcld |
|- ( j e. NN -> ( ( sqrt ` ( 2 x. ( j + 1 ) ) ) x. ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) ) e. RR+ ) |
| 140 |
133 139
|
rpdivcld |
|- ( j e. NN -> ( ( ! ` ( j + 1 ) ) / ( ( sqrt ` ( 2 x. ( j + 1 ) ) ) x. ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) ) ) e. RR+ ) |
| 141 |
131 140
|
eqeltrd |
|- ( j e. NN -> ( A ` ( j + 1 ) ) e. RR+ ) |
| 142 |
141
|
relogcld |
|- ( j e. NN -> ( log ` ( A ` ( j + 1 ) ) ) e. RR ) |
| 143 |
|
nfcv |
|- F/_ n ( j + 1 ) |
| 144 |
21 143
|
nffv |
|- F/_ n ( A ` ( j + 1 ) ) |
| 145 |
19 144
|
nffv |
|- F/_ n ( log ` ( A ` ( j + 1 ) ) ) |
| 146 |
|
2fveq3 |
|- ( n = ( j + 1 ) -> ( log ` ( A ` n ) ) = ( log ` ( A ` ( j + 1 ) ) ) ) |
| 147 |
143 145 146 2
|
fvmptf |
|- ( ( ( j + 1 ) e. NN /\ ( log ` ( A ` ( j + 1 ) ) ) e. RR ) -> ( B ` ( j + 1 ) ) = ( log ` ( A ` ( j + 1 ) ) ) ) |
| 148 |
81 142 147
|
syl2anc |
|- ( j e. NN -> ( B ` ( j + 1 ) ) = ( log ` ( A ` ( j + 1 ) ) ) ) |
| 149 |
148 142
|
eqeltrd |
|- ( j e. NN -> ( B ` ( j + 1 ) ) e. RR ) |
| 150 |
79
|
ffvelcdmi |
|- ( j e. NN -> ( B ` j ) e. RR ) |
| 151 |
|
eqid |
|- ( z e. NN |-> ( ( 1 / ( ( 2 x. z ) + 1 ) ) x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) ^ ( 2 x. z ) ) ) ) = ( z e. NN |-> ( ( 1 / ( ( 2 x. z ) + 1 ) ) x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) ^ ( 2 x. z ) ) ) ) |
| 152 |
1 2 151
|
stirlinglem11 |
|- ( j e. NN -> ( B ` ( j + 1 ) ) < ( B ` j ) ) |
| 153 |
149 150 152
|
ltled |
|- ( j e. NN -> ( B ` ( j + 1 ) ) <_ ( B ` j ) ) |
| 154 |
153
|
adantl |
|- ( ( T. /\ j e. NN ) -> ( B ` ( j + 1 ) ) <_ ( B ` j ) ) |
| 155 |
52
|
a1i |
|- ( T. -> E. x e. RR A. j e. NN x <_ ( B ` j ) ) |
| 156 |
77 78 80 154 155
|
climinf |
|- ( T. -> B ~~> inf ( ran B , RR , < ) ) |
| 157 |
156
|
mptru |
|- B ~~> inf ( ran B , RR , < ) |
| 158 |
|
breq2 |
|- ( d = inf ( ran B , RR , < ) -> ( B ~~> d <-> B ~~> inf ( ran B , RR , < ) ) ) |
| 159 |
158
|
rspcev |
|- ( ( inf ( ran B , RR , < ) e. RR /\ B ~~> inf ( ran B , RR , < ) ) -> E. d e. RR B ~~> d ) |
| 160 |
76 157 159
|
mp2an |
|- E. d e. RR B ~~> d |