Step |
Hyp |
Ref |
Expression |
1 |
|
stirlinglem14.1 |
|- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
2 |
|
stirlinglem14.2 |
|- B = ( n e. NN |-> ( log ` ( A ` n ) ) ) |
3 |
1 2
|
stirlinglem13 |
|- E. d e. RR B ~~> d |
4 |
|
simpl |
|- ( ( d e. RR /\ B ~~> d ) -> d e. RR ) |
5 |
4
|
rpefcld |
|- ( ( d e. RR /\ B ~~> d ) -> ( exp ` d ) e. RR+ ) |
6 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
7 |
|
1zzd |
|- ( ( d e. RR /\ B ~~> d ) -> 1 e. ZZ ) |
8 |
|
efcn |
|- exp e. ( CC -cn-> CC ) |
9 |
8
|
a1i |
|- ( ( d e. RR /\ B ~~> d ) -> exp e. ( CC -cn-> CC ) ) |
10 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
11 |
|
faccl |
|- ( n e. NN0 -> ( ! ` n ) e. NN ) |
12 |
|
nncn |
|- ( ( ! ` n ) e. NN -> ( ! ` n ) e. CC ) |
13 |
10 11 12
|
3syl |
|- ( n e. NN -> ( ! ` n ) e. CC ) |
14 |
|
2cnd |
|- ( n e. NN -> 2 e. CC ) |
15 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
16 |
14 15
|
mulcld |
|- ( n e. NN -> ( 2 x. n ) e. CC ) |
17 |
16
|
sqrtcld |
|- ( n e. NN -> ( sqrt ` ( 2 x. n ) ) e. CC ) |
18 |
|
epr |
|- _e e. RR+ |
19 |
|
rpcn |
|- ( _e e. RR+ -> _e e. CC ) |
20 |
18 19
|
ax-mp |
|- _e e. CC |
21 |
20
|
a1i |
|- ( n e. NN -> _e e. CC ) |
22 |
|
0re |
|- 0 e. RR |
23 |
|
epos |
|- 0 < _e |
24 |
22 23
|
gtneii |
|- _e =/= 0 |
25 |
24
|
a1i |
|- ( n e. NN -> _e =/= 0 ) |
26 |
15 21 25
|
divcld |
|- ( n e. NN -> ( n / _e ) e. CC ) |
27 |
26 10
|
expcld |
|- ( n e. NN -> ( ( n / _e ) ^ n ) e. CC ) |
28 |
17 27
|
mulcld |
|- ( n e. NN -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) e. CC ) |
29 |
|
2rp |
|- 2 e. RR+ |
30 |
29
|
a1i |
|- ( n e. NN -> 2 e. RR+ ) |
31 |
|
nnrp |
|- ( n e. NN -> n e. RR+ ) |
32 |
30 31
|
rpmulcld |
|- ( n e. NN -> ( 2 x. n ) e. RR+ ) |
33 |
32
|
sqrtgt0d |
|- ( n e. NN -> 0 < ( sqrt ` ( 2 x. n ) ) ) |
34 |
33
|
gt0ne0d |
|- ( n e. NN -> ( sqrt ` ( 2 x. n ) ) =/= 0 ) |
35 |
|
nnne0 |
|- ( n e. NN -> n =/= 0 ) |
36 |
15 21 35 25
|
divne0d |
|- ( n e. NN -> ( n / _e ) =/= 0 ) |
37 |
|
nnz |
|- ( n e. NN -> n e. ZZ ) |
38 |
26 36 37
|
expne0d |
|- ( n e. NN -> ( ( n / _e ) ^ n ) =/= 0 ) |
39 |
17 27 34 38
|
mulne0d |
|- ( n e. NN -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) =/= 0 ) |
40 |
13 28 39
|
divcld |
|- ( n e. NN -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) e. CC ) |
41 |
1
|
fvmpt2 |
|- ( ( n e. NN /\ ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) e. CC ) -> ( A ` n ) = ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
42 |
40 41
|
mpdan |
|- ( n e. NN -> ( A ` n ) = ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
43 |
42 40
|
eqeltrd |
|- ( n e. NN -> ( A ` n ) e. CC ) |
44 |
|
nnne0 |
|- ( ( ! ` n ) e. NN -> ( ! ` n ) =/= 0 ) |
45 |
10 11 44
|
3syl |
|- ( n e. NN -> ( ! ` n ) =/= 0 ) |
46 |
13 28 45 39
|
divne0d |
|- ( n e. NN -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) =/= 0 ) |
47 |
42 46
|
eqnetrd |
|- ( n e. NN -> ( A ` n ) =/= 0 ) |
48 |
43 47
|
logcld |
|- ( n e. NN -> ( log ` ( A ` n ) ) e. CC ) |
49 |
2 48
|
fmpti |
|- B : NN --> CC |
50 |
49
|
a1i |
|- ( ( d e. RR /\ B ~~> d ) -> B : NN --> CC ) |
51 |
|
simpr |
|- ( ( d e. RR /\ B ~~> d ) -> B ~~> d ) |
52 |
4
|
recnd |
|- ( ( d e. RR /\ B ~~> d ) -> d e. CC ) |
53 |
6 7 9 50 51 52
|
climcncf |
|- ( ( d e. RR /\ B ~~> d ) -> ( exp o. B ) ~~> ( exp ` d ) ) |
54 |
8
|
elexi |
|- exp e. _V |
55 |
|
nnex |
|- NN e. _V |
56 |
55
|
mptex |
|- ( n e. NN |-> ( log ` ( A ` n ) ) ) e. _V |
57 |
2 56
|
eqeltri |
|- B e. _V |
58 |
54 57
|
coex |
|- ( exp o. B ) e. _V |
59 |
58
|
a1i |
|- ( T. -> ( exp o. B ) e. _V ) |
60 |
55
|
mptex |
|- ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) e. _V |
61 |
1 60
|
eqeltri |
|- A e. _V |
62 |
61
|
a1i |
|- ( T. -> A e. _V ) |
63 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
64 |
2
|
funmpt2 |
|- Fun B |
65 |
|
id |
|- ( k e. NN -> k e. NN ) |
66 |
|
rabid2 |
|- ( NN = { n e. NN | ( log ` ( A ` n ) ) e. _V } <-> A. n e. NN ( log ` ( A ` n ) ) e. _V ) |
67 |
1
|
stirlinglem2 |
|- ( n e. NN -> ( A ` n ) e. RR+ ) |
68 |
|
relogcl |
|- ( ( A ` n ) e. RR+ -> ( log ` ( A ` n ) ) e. RR ) |
69 |
|
elex |
|- ( ( log ` ( A ` n ) ) e. RR -> ( log ` ( A ` n ) ) e. _V ) |
70 |
67 68 69
|
3syl |
|- ( n e. NN -> ( log ` ( A ` n ) ) e. _V ) |
71 |
66 70
|
mprgbir |
|- NN = { n e. NN | ( log ` ( A ` n ) ) e. _V } |
72 |
2
|
dmmpt |
|- dom B = { n e. NN | ( log ` ( A ` n ) ) e. _V } |
73 |
71 72
|
eqtr4i |
|- NN = dom B |
74 |
65 73
|
eleqtrdi |
|- ( k e. NN -> k e. dom B ) |
75 |
|
fvco |
|- ( ( Fun B /\ k e. dom B ) -> ( ( exp o. B ) ` k ) = ( exp ` ( B ` k ) ) ) |
76 |
64 74 75
|
sylancr |
|- ( k e. NN -> ( ( exp o. B ) ` k ) = ( exp ` ( B ` k ) ) ) |
77 |
1
|
a1i |
|- ( k e. NN -> A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ) |
78 |
|
simpr |
|- ( ( k e. NN /\ n = k ) -> n = k ) |
79 |
78
|
fveq2d |
|- ( ( k e. NN /\ n = k ) -> ( ! ` n ) = ( ! ` k ) ) |
80 |
78
|
oveq2d |
|- ( ( k e. NN /\ n = k ) -> ( 2 x. n ) = ( 2 x. k ) ) |
81 |
80
|
fveq2d |
|- ( ( k e. NN /\ n = k ) -> ( sqrt ` ( 2 x. n ) ) = ( sqrt ` ( 2 x. k ) ) ) |
82 |
78
|
oveq1d |
|- ( ( k e. NN /\ n = k ) -> ( n / _e ) = ( k / _e ) ) |
83 |
82 78
|
oveq12d |
|- ( ( k e. NN /\ n = k ) -> ( ( n / _e ) ^ n ) = ( ( k / _e ) ^ k ) ) |
84 |
81 83
|
oveq12d |
|- ( ( k e. NN /\ n = k ) -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) = ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) |
85 |
79 84
|
oveq12d |
|- ( ( k e. NN /\ n = k ) -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) |
86 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
87 |
|
faccl |
|- ( k e. NN0 -> ( ! ` k ) e. NN ) |
88 |
|
nncn |
|- ( ( ! ` k ) e. NN -> ( ! ` k ) e. CC ) |
89 |
86 87 88
|
3syl |
|- ( k e. NN -> ( ! ` k ) e. CC ) |
90 |
|
2cnd |
|- ( k e. NN -> 2 e. CC ) |
91 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
92 |
90 91
|
mulcld |
|- ( k e. NN -> ( 2 x. k ) e. CC ) |
93 |
92
|
sqrtcld |
|- ( k e. NN -> ( sqrt ` ( 2 x. k ) ) e. CC ) |
94 |
20
|
a1i |
|- ( k e. NN -> _e e. CC ) |
95 |
24
|
a1i |
|- ( k e. NN -> _e =/= 0 ) |
96 |
91 94 95
|
divcld |
|- ( k e. NN -> ( k / _e ) e. CC ) |
97 |
96 86
|
expcld |
|- ( k e. NN -> ( ( k / _e ) ^ k ) e. CC ) |
98 |
93 97
|
mulcld |
|- ( k e. NN -> ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) e. CC ) |
99 |
29
|
a1i |
|- ( k e. NN -> 2 e. RR+ ) |
100 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
101 |
99 100
|
rpmulcld |
|- ( k e. NN -> ( 2 x. k ) e. RR+ ) |
102 |
101
|
sqrtgt0d |
|- ( k e. NN -> 0 < ( sqrt ` ( 2 x. k ) ) ) |
103 |
102
|
gt0ne0d |
|- ( k e. NN -> ( sqrt ` ( 2 x. k ) ) =/= 0 ) |
104 |
|
nnne0 |
|- ( k e. NN -> k =/= 0 ) |
105 |
91 94 104 95
|
divne0d |
|- ( k e. NN -> ( k / _e ) =/= 0 ) |
106 |
|
nnz |
|- ( k e. NN -> k e. ZZ ) |
107 |
96 105 106
|
expne0d |
|- ( k e. NN -> ( ( k / _e ) ^ k ) =/= 0 ) |
108 |
93 97 103 107
|
mulne0d |
|- ( k e. NN -> ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) =/= 0 ) |
109 |
89 98 108
|
divcld |
|- ( k e. NN -> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) e. CC ) |
110 |
77 85 65 109
|
fvmptd |
|- ( k e. NN -> ( A ` k ) = ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) |
111 |
110 109
|
eqeltrd |
|- ( k e. NN -> ( A ` k ) e. CC ) |
112 |
|
nnne0 |
|- ( ( ! ` k ) e. NN -> ( ! ` k ) =/= 0 ) |
113 |
86 87 112
|
3syl |
|- ( k e. NN -> ( ! ` k ) =/= 0 ) |
114 |
89 98 113 108
|
divne0d |
|- ( k e. NN -> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) =/= 0 ) |
115 |
110 114
|
eqnetrd |
|- ( k e. NN -> ( A ` k ) =/= 0 ) |
116 |
111 115
|
logcld |
|- ( k e. NN -> ( log ` ( A ` k ) ) e. CC ) |
117 |
|
nfcv |
|- F/_ n k |
118 |
|
nfcv |
|- F/_ n log |
119 |
|
nfmpt1 |
|- F/_ n ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
120 |
1 119
|
nfcxfr |
|- F/_ n A |
121 |
120 117
|
nffv |
|- F/_ n ( A ` k ) |
122 |
118 121
|
nffv |
|- F/_ n ( log ` ( A ` k ) ) |
123 |
|
2fveq3 |
|- ( n = k -> ( log ` ( A ` n ) ) = ( log ` ( A ` k ) ) ) |
124 |
117 122 123 2
|
fvmptf |
|- ( ( k e. NN /\ ( log ` ( A ` k ) ) e. CC ) -> ( B ` k ) = ( log ` ( A ` k ) ) ) |
125 |
116 124
|
mpdan |
|- ( k e. NN -> ( B ` k ) = ( log ` ( A ` k ) ) ) |
126 |
125
|
fveq2d |
|- ( k e. NN -> ( exp ` ( B ` k ) ) = ( exp ` ( log ` ( A ` k ) ) ) ) |
127 |
|
eflog |
|- ( ( ( A ` k ) e. CC /\ ( A ` k ) =/= 0 ) -> ( exp ` ( log ` ( A ` k ) ) ) = ( A ` k ) ) |
128 |
111 115 127
|
syl2anc |
|- ( k e. NN -> ( exp ` ( log ` ( A ` k ) ) ) = ( A ` k ) ) |
129 |
76 126 128
|
3eqtrd |
|- ( k e. NN -> ( ( exp o. B ) ` k ) = ( A ` k ) ) |
130 |
129
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( ( exp o. B ) ` k ) = ( A ` k ) ) |
131 |
6 59 62 63 130
|
climeq |
|- ( T. -> ( ( exp o. B ) ~~> ( exp ` d ) <-> A ~~> ( exp ` d ) ) ) |
132 |
131
|
mptru |
|- ( ( exp o. B ) ~~> ( exp ` d ) <-> A ~~> ( exp ` d ) ) |
133 |
53 132
|
sylib |
|- ( ( d e. RR /\ B ~~> d ) -> A ~~> ( exp ` d ) ) |
134 |
|
breq2 |
|- ( c = ( exp ` d ) -> ( A ~~> c <-> A ~~> ( exp ` d ) ) ) |
135 |
134
|
rspcev |
|- ( ( ( exp ` d ) e. RR+ /\ A ~~> ( exp ` d ) ) -> E. c e. RR+ A ~~> c ) |
136 |
5 133 135
|
syl2anc |
|- ( ( d e. RR /\ B ~~> d ) -> E. c e. RR+ A ~~> c ) |
137 |
136
|
rexlimiva |
|- ( E. d e. RR B ~~> d -> E. c e. RR+ A ~~> c ) |
138 |
3 137
|
ax-mp |
|- E. c e. RR+ A ~~> c |