| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stirlinglem14.1 |  |-  A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 2 |  | stirlinglem14.2 |  |-  B = ( n e. NN |-> ( log ` ( A ` n ) ) ) | 
						
							| 3 | 1 2 | stirlinglem13 |  |-  E. d e. RR B ~~> d | 
						
							| 4 |  | simpl |  |-  ( ( d e. RR /\ B ~~> d ) -> d e. RR ) | 
						
							| 5 | 4 | rpefcld |  |-  ( ( d e. RR /\ B ~~> d ) -> ( exp ` d ) e. RR+ ) | 
						
							| 6 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 7 |  | 1zzd |  |-  ( ( d e. RR /\ B ~~> d ) -> 1 e. ZZ ) | 
						
							| 8 |  | efcn |  |-  exp e. ( CC -cn-> CC ) | 
						
							| 9 | 8 | a1i |  |-  ( ( d e. RR /\ B ~~> d ) -> exp e. ( CC -cn-> CC ) ) | 
						
							| 10 |  | nnnn0 |  |-  ( n e. NN -> n e. NN0 ) | 
						
							| 11 |  | faccl |  |-  ( n e. NN0 -> ( ! ` n ) e. NN ) | 
						
							| 12 |  | nncn |  |-  ( ( ! ` n ) e. NN -> ( ! ` n ) e. CC ) | 
						
							| 13 | 10 11 12 | 3syl |  |-  ( n e. NN -> ( ! ` n ) e. CC ) | 
						
							| 14 |  | 2cnd |  |-  ( n e. NN -> 2 e. CC ) | 
						
							| 15 |  | nncn |  |-  ( n e. NN -> n e. CC ) | 
						
							| 16 | 14 15 | mulcld |  |-  ( n e. NN -> ( 2 x. n ) e. CC ) | 
						
							| 17 | 16 | sqrtcld |  |-  ( n e. NN -> ( sqrt ` ( 2 x. n ) ) e. CC ) | 
						
							| 18 |  | epr |  |-  _e e. RR+ | 
						
							| 19 |  | rpcn |  |-  ( _e e. RR+ -> _e e. CC ) | 
						
							| 20 | 18 19 | ax-mp |  |-  _e e. CC | 
						
							| 21 | 20 | a1i |  |-  ( n e. NN -> _e e. CC ) | 
						
							| 22 |  | 0re |  |-  0 e. RR | 
						
							| 23 |  | epos |  |-  0 < _e | 
						
							| 24 | 22 23 | gtneii |  |-  _e =/= 0 | 
						
							| 25 | 24 | a1i |  |-  ( n e. NN -> _e =/= 0 ) | 
						
							| 26 | 15 21 25 | divcld |  |-  ( n e. NN -> ( n / _e ) e. CC ) | 
						
							| 27 | 26 10 | expcld |  |-  ( n e. NN -> ( ( n / _e ) ^ n ) e. CC ) | 
						
							| 28 | 17 27 | mulcld |  |-  ( n e. NN -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) e. CC ) | 
						
							| 29 |  | 2rp |  |-  2 e. RR+ | 
						
							| 30 | 29 | a1i |  |-  ( n e. NN -> 2 e. RR+ ) | 
						
							| 31 |  | nnrp |  |-  ( n e. NN -> n e. RR+ ) | 
						
							| 32 | 30 31 | rpmulcld |  |-  ( n e. NN -> ( 2 x. n ) e. RR+ ) | 
						
							| 33 | 32 | sqrtgt0d |  |-  ( n e. NN -> 0 < ( sqrt ` ( 2 x. n ) ) ) | 
						
							| 34 | 33 | gt0ne0d |  |-  ( n e. NN -> ( sqrt ` ( 2 x. n ) ) =/= 0 ) | 
						
							| 35 |  | nnne0 |  |-  ( n e. NN -> n =/= 0 ) | 
						
							| 36 | 15 21 35 25 | divne0d |  |-  ( n e. NN -> ( n / _e ) =/= 0 ) | 
						
							| 37 |  | nnz |  |-  ( n e. NN -> n e. ZZ ) | 
						
							| 38 | 26 36 37 | expne0d |  |-  ( n e. NN -> ( ( n / _e ) ^ n ) =/= 0 ) | 
						
							| 39 | 17 27 34 38 | mulne0d |  |-  ( n e. NN -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) =/= 0 ) | 
						
							| 40 | 13 28 39 | divcld |  |-  ( n e. NN -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) e. CC ) | 
						
							| 41 | 1 | fvmpt2 |  |-  ( ( n e. NN /\ ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) e. CC ) -> ( A ` n ) = ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 42 | 40 41 | mpdan |  |-  ( n e. NN -> ( A ` n ) = ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 43 | 42 40 | eqeltrd |  |-  ( n e. NN -> ( A ` n ) e. CC ) | 
						
							| 44 |  | nnne0 |  |-  ( ( ! ` n ) e. NN -> ( ! ` n ) =/= 0 ) | 
						
							| 45 | 10 11 44 | 3syl |  |-  ( n e. NN -> ( ! ` n ) =/= 0 ) | 
						
							| 46 | 13 28 45 39 | divne0d |  |-  ( n e. NN -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) =/= 0 ) | 
						
							| 47 | 42 46 | eqnetrd |  |-  ( n e. NN -> ( A ` n ) =/= 0 ) | 
						
							| 48 | 43 47 | logcld |  |-  ( n e. NN -> ( log ` ( A ` n ) ) e. CC ) | 
						
							| 49 | 2 48 | fmpti |  |-  B : NN --> CC | 
						
							| 50 | 49 | a1i |  |-  ( ( d e. RR /\ B ~~> d ) -> B : NN --> CC ) | 
						
							| 51 |  | simpr |  |-  ( ( d e. RR /\ B ~~> d ) -> B ~~> d ) | 
						
							| 52 | 4 | recnd |  |-  ( ( d e. RR /\ B ~~> d ) -> d e. CC ) | 
						
							| 53 | 6 7 9 50 51 52 | climcncf |  |-  ( ( d e. RR /\ B ~~> d ) -> ( exp o. B ) ~~> ( exp ` d ) ) | 
						
							| 54 | 8 | elexi |  |-  exp e. _V | 
						
							| 55 |  | nnex |  |-  NN e. _V | 
						
							| 56 | 55 | mptex |  |-  ( n e. NN |-> ( log ` ( A ` n ) ) ) e. _V | 
						
							| 57 | 2 56 | eqeltri |  |-  B e. _V | 
						
							| 58 | 54 57 | coex |  |-  ( exp o. B ) e. _V | 
						
							| 59 | 58 | a1i |  |-  ( T. -> ( exp o. B ) e. _V ) | 
						
							| 60 | 55 | mptex |  |-  ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) e. _V | 
						
							| 61 | 1 60 | eqeltri |  |-  A e. _V | 
						
							| 62 | 61 | a1i |  |-  ( T. -> A e. _V ) | 
						
							| 63 |  | 1zzd |  |-  ( T. -> 1 e. ZZ ) | 
						
							| 64 | 2 | funmpt2 |  |-  Fun B | 
						
							| 65 |  | id |  |-  ( k e. NN -> k e. NN ) | 
						
							| 66 |  | rabid2 |  |-  ( NN = { n e. NN | ( log ` ( A ` n ) ) e. _V } <-> A. n e. NN ( log ` ( A ` n ) ) e. _V ) | 
						
							| 67 | 1 | stirlinglem2 |  |-  ( n e. NN -> ( A ` n ) e. RR+ ) | 
						
							| 68 |  | relogcl |  |-  ( ( A ` n ) e. RR+ -> ( log ` ( A ` n ) ) e. RR ) | 
						
							| 69 |  | elex |  |-  ( ( log ` ( A ` n ) ) e. RR -> ( log ` ( A ` n ) ) e. _V ) | 
						
							| 70 | 67 68 69 | 3syl |  |-  ( n e. NN -> ( log ` ( A ` n ) ) e. _V ) | 
						
							| 71 | 66 70 | mprgbir |  |-  NN = { n e. NN | ( log ` ( A ` n ) ) e. _V } | 
						
							| 72 | 2 | dmmpt |  |-  dom B = { n e. NN | ( log ` ( A ` n ) ) e. _V } | 
						
							| 73 | 71 72 | eqtr4i |  |-  NN = dom B | 
						
							| 74 | 65 73 | eleqtrdi |  |-  ( k e. NN -> k e. dom B ) | 
						
							| 75 |  | fvco |  |-  ( ( Fun B /\ k e. dom B ) -> ( ( exp o. B ) ` k ) = ( exp ` ( B ` k ) ) ) | 
						
							| 76 | 64 74 75 | sylancr |  |-  ( k e. NN -> ( ( exp o. B ) ` k ) = ( exp ` ( B ` k ) ) ) | 
						
							| 77 | 1 | a1i |  |-  ( k e. NN -> A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ) | 
						
							| 78 |  | simpr |  |-  ( ( k e. NN /\ n = k ) -> n = k ) | 
						
							| 79 | 78 | fveq2d |  |-  ( ( k e. NN /\ n = k ) -> ( ! ` n ) = ( ! ` k ) ) | 
						
							| 80 | 78 | oveq2d |  |-  ( ( k e. NN /\ n = k ) -> ( 2 x. n ) = ( 2 x. k ) ) | 
						
							| 81 | 80 | fveq2d |  |-  ( ( k e. NN /\ n = k ) -> ( sqrt ` ( 2 x. n ) ) = ( sqrt ` ( 2 x. k ) ) ) | 
						
							| 82 | 78 | oveq1d |  |-  ( ( k e. NN /\ n = k ) -> ( n / _e ) = ( k / _e ) ) | 
						
							| 83 | 82 78 | oveq12d |  |-  ( ( k e. NN /\ n = k ) -> ( ( n / _e ) ^ n ) = ( ( k / _e ) ^ k ) ) | 
						
							| 84 | 81 83 | oveq12d |  |-  ( ( k e. NN /\ n = k ) -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) = ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) | 
						
							| 85 | 79 84 | oveq12d |  |-  ( ( k e. NN /\ n = k ) -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) | 
						
							| 86 |  | nnnn0 |  |-  ( k e. NN -> k e. NN0 ) | 
						
							| 87 |  | faccl |  |-  ( k e. NN0 -> ( ! ` k ) e. NN ) | 
						
							| 88 |  | nncn |  |-  ( ( ! ` k ) e. NN -> ( ! ` k ) e. CC ) | 
						
							| 89 | 86 87 88 | 3syl |  |-  ( k e. NN -> ( ! ` k ) e. CC ) | 
						
							| 90 |  | 2cnd |  |-  ( k e. NN -> 2 e. CC ) | 
						
							| 91 |  | nncn |  |-  ( k e. NN -> k e. CC ) | 
						
							| 92 | 90 91 | mulcld |  |-  ( k e. NN -> ( 2 x. k ) e. CC ) | 
						
							| 93 | 92 | sqrtcld |  |-  ( k e. NN -> ( sqrt ` ( 2 x. k ) ) e. CC ) | 
						
							| 94 | 20 | a1i |  |-  ( k e. NN -> _e e. CC ) | 
						
							| 95 | 24 | a1i |  |-  ( k e. NN -> _e =/= 0 ) | 
						
							| 96 | 91 94 95 | divcld |  |-  ( k e. NN -> ( k / _e ) e. CC ) | 
						
							| 97 | 96 86 | expcld |  |-  ( k e. NN -> ( ( k / _e ) ^ k ) e. CC ) | 
						
							| 98 | 93 97 | mulcld |  |-  ( k e. NN -> ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) e. CC ) | 
						
							| 99 | 29 | a1i |  |-  ( k e. NN -> 2 e. RR+ ) | 
						
							| 100 |  | nnrp |  |-  ( k e. NN -> k e. RR+ ) | 
						
							| 101 | 99 100 | rpmulcld |  |-  ( k e. NN -> ( 2 x. k ) e. RR+ ) | 
						
							| 102 | 101 | sqrtgt0d |  |-  ( k e. NN -> 0 < ( sqrt ` ( 2 x. k ) ) ) | 
						
							| 103 | 102 | gt0ne0d |  |-  ( k e. NN -> ( sqrt ` ( 2 x. k ) ) =/= 0 ) | 
						
							| 104 |  | nnne0 |  |-  ( k e. NN -> k =/= 0 ) | 
						
							| 105 | 91 94 104 95 | divne0d |  |-  ( k e. NN -> ( k / _e ) =/= 0 ) | 
						
							| 106 |  | nnz |  |-  ( k e. NN -> k e. ZZ ) | 
						
							| 107 | 96 105 106 | expne0d |  |-  ( k e. NN -> ( ( k / _e ) ^ k ) =/= 0 ) | 
						
							| 108 | 93 97 103 107 | mulne0d |  |-  ( k e. NN -> ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) =/= 0 ) | 
						
							| 109 | 89 98 108 | divcld |  |-  ( k e. NN -> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) e. CC ) | 
						
							| 110 | 77 85 65 109 | fvmptd |  |-  ( k e. NN -> ( A ` k ) = ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) | 
						
							| 111 | 110 109 | eqeltrd |  |-  ( k e. NN -> ( A ` k ) e. CC ) | 
						
							| 112 |  | nnne0 |  |-  ( ( ! ` k ) e. NN -> ( ! ` k ) =/= 0 ) | 
						
							| 113 | 86 87 112 | 3syl |  |-  ( k e. NN -> ( ! ` k ) =/= 0 ) | 
						
							| 114 | 89 98 113 108 | divne0d |  |-  ( k e. NN -> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) =/= 0 ) | 
						
							| 115 | 110 114 | eqnetrd |  |-  ( k e. NN -> ( A ` k ) =/= 0 ) | 
						
							| 116 | 111 115 | logcld |  |-  ( k e. NN -> ( log ` ( A ` k ) ) e. CC ) | 
						
							| 117 |  | nfcv |  |-  F/_ n k | 
						
							| 118 |  | nfcv |  |-  F/_ n log | 
						
							| 119 |  | nfmpt1 |  |-  F/_ n ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 120 | 1 119 | nfcxfr |  |-  F/_ n A | 
						
							| 121 | 120 117 | nffv |  |-  F/_ n ( A ` k ) | 
						
							| 122 | 118 121 | nffv |  |-  F/_ n ( log ` ( A ` k ) ) | 
						
							| 123 |  | 2fveq3 |  |-  ( n = k -> ( log ` ( A ` n ) ) = ( log ` ( A ` k ) ) ) | 
						
							| 124 | 117 122 123 2 | fvmptf |  |-  ( ( k e. NN /\ ( log ` ( A ` k ) ) e. CC ) -> ( B ` k ) = ( log ` ( A ` k ) ) ) | 
						
							| 125 | 116 124 | mpdan |  |-  ( k e. NN -> ( B ` k ) = ( log ` ( A ` k ) ) ) | 
						
							| 126 | 125 | fveq2d |  |-  ( k e. NN -> ( exp ` ( B ` k ) ) = ( exp ` ( log ` ( A ` k ) ) ) ) | 
						
							| 127 |  | eflog |  |-  ( ( ( A ` k ) e. CC /\ ( A ` k ) =/= 0 ) -> ( exp ` ( log ` ( A ` k ) ) ) = ( A ` k ) ) | 
						
							| 128 | 111 115 127 | syl2anc |  |-  ( k e. NN -> ( exp ` ( log ` ( A ` k ) ) ) = ( A ` k ) ) | 
						
							| 129 | 76 126 128 | 3eqtrd |  |-  ( k e. NN -> ( ( exp o. B ) ` k ) = ( A ` k ) ) | 
						
							| 130 | 129 | adantl |  |-  ( ( T. /\ k e. NN ) -> ( ( exp o. B ) ` k ) = ( A ` k ) ) | 
						
							| 131 | 6 59 62 63 130 | climeq |  |-  ( T. -> ( ( exp o. B ) ~~> ( exp ` d ) <-> A ~~> ( exp ` d ) ) ) | 
						
							| 132 | 131 | mptru |  |-  ( ( exp o. B ) ~~> ( exp ` d ) <-> A ~~> ( exp ` d ) ) | 
						
							| 133 | 53 132 | sylib |  |-  ( ( d e. RR /\ B ~~> d ) -> A ~~> ( exp ` d ) ) | 
						
							| 134 |  | breq2 |  |-  ( c = ( exp ` d ) -> ( A ~~> c <-> A ~~> ( exp ` d ) ) ) | 
						
							| 135 | 134 | rspcev |  |-  ( ( ( exp ` d ) e. RR+ /\ A ~~> ( exp ` d ) ) -> E. c e. RR+ A ~~> c ) | 
						
							| 136 | 5 133 135 | syl2anc |  |-  ( ( d e. RR /\ B ~~> d ) -> E. c e. RR+ A ~~> c ) | 
						
							| 137 | 136 | rexlimiva |  |-  ( E. d e. RR B ~~> d -> E. c e. RR+ A ~~> c ) | 
						
							| 138 | 3 137 | ax-mp |  |-  E. c e. RR+ A ~~> c |