| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stirlinglem15.1 |  |-  F/ n ph | 
						
							| 2 |  | stirlinglem15.2 |  |-  S = ( n e. NN0 |-> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) | 
						
							| 3 |  | stirlinglem15.3 |  |-  A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 4 |  | stirlinglem15.4 |  |-  D = ( n e. NN |-> ( A ` ( 2 x. n ) ) ) | 
						
							| 5 |  | stirlinglem15.5 |  |-  E = ( n e. NN |-> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) | 
						
							| 6 |  | stirlinglem15.6 |  |-  V = ( n e. NN |-> ( ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 7 |  | stirlinglem15.7 |  |-  F = ( n e. NN |-> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) | 
						
							| 8 |  | stirlinglem15.8 |  |-  H = ( n e. NN |-> ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) | 
						
							| 9 |  | stirlinglem15.9 |  |-  ( ph -> C e. RR+ ) | 
						
							| 10 |  | stirlinglem15.10 |  |-  ( ph -> A ~~> C ) | 
						
							| 11 |  | nnnn0 |  |-  ( n e. NN -> n e. NN0 ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ph /\ n e. NN ) -> n e. NN0 ) | 
						
							| 13 |  | 2cnd |  |-  ( ( ph /\ n e. NN ) -> 2 e. CC ) | 
						
							| 14 |  | picn |  |-  _pi e. CC | 
						
							| 15 | 14 | a1i |  |-  ( ( ph /\ n e. NN ) -> _pi e. CC ) | 
						
							| 16 | 13 15 | mulcld |  |-  ( ( ph /\ n e. NN ) -> ( 2 x. _pi ) e. CC ) | 
						
							| 17 |  | nncn |  |-  ( n e. NN -> n e. CC ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ph /\ n e. NN ) -> n e. CC ) | 
						
							| 19 | 16 18 | mulcld |  |-  ( ( ph /\ n e. NN ) -> ( ( 2 x. _pi ) x. n ) e. CC ) | 
						
							| 20 | 19 | sqrtcld |  |-  ( ( ph /\ n e. NN ) -> ( sqrt ` ( ( 2 x. _pi ) x. n ) ) e. CC ) | 
						
							| 21 |  | ere |  |-  _e e. RR | 
						
							| 22 | 21 | recni |  |-  _e e. CC | 
						
							| 23 | 22 | a1i |  |-  ( n e. NN -> _e e. CC ) | 
						
							| 24 |  | epos |  |-  0 < _e | 
						
							| 25 | 21 24 | gt0ne0ii |  |-  _e =/= 0 | 
						
							| 26 | 25 | a1i |  |-  ( n e. NN -> _e =/= 0 ) | 
						
							| 27 | 17 23 26 | divcld |  |-  ( n e. NN -> ( n / _e ) e. CC ) | 
						
							| 28 | 27 11 | expcld |  |-  ( n e. NN -> ( ( n / _e ) ^ n ) e. CC ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( ( n / _e ) ^ n ) e. CC ) | 
						
							| 30 | 20 29 | mulcld |  |-  ( ( ph /\ n e. NN ) -> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) e. CC ) | 
						
							| 31 | 2 | fvmpt2 |  |-  ( ( n e. NN0 /\ ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) e. CC ) -> ( S ` n ) = ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) | 
						
							| 32 | 12 30 31 | syl2anc |  |-  ( ( ph /\ n e. NN ) -> ( S ` n ) = ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) | 
						
							| 33 | 32 | oveq2d |  |-  ( ( ph /\ n e. NN ) -> ( ( ! ` n ) / ( S ` n ) ) = ( ( ! ` n ) / ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 34 | 15 | sqrtcld |  |-  ( ( ph /\ n e. NN ) -> ( sqrt ` _pi ) e. CC ) | 
						
							| 35 |  | 2cnd |  |-  ( n e. NN -> 2 e. CC ) | 
						
							| 36 | 35 17 | mulcld |  |-  ( n e. NN -> ( 2 x. n ) e. CC ) | 
						
							| 37 | 36 | sqrtcld |  |-  ( n e. NN -> ( sqrt ` ( 2 x. n ) ) e. CC ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( sqrt ` ( 2 x. n ) ) e. CC ) | 
						
							| 39 | 34 38 29 | mulassd |  |-  ( ( ph /\ n e. NN ) -> ( ( ( sqrt ` _pi ) x. ( sqrt ` ( 2 x. n ) ) ) x. ( ( n / _e ) ^ n ) ) = ( ( sqrt ` _pi ) x. ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 40 |  | nfmpt1 |  |-  F/_ n ( n e. NN |-> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) | 
						
							| 41 | 7 40 | nfcxfr |  |-  F/_ n F | 
						
							| 42 |  | nfmpt1 |  |-  F/_ n ( n e. NN |-> ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) | 
						
							| 43 | 8 42 | nfcxfr |  |-  F/_ n H | 
						
							| 44 |  | nfmpt1 |  |-  F/_ n ( n e. NN |-> ( ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 45 | 6 44 | nfcxfr |  |-  F/_ n V | 
						
							| 46 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 47 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 48 |  | nfmpt1 |  |-  F/_ n ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 49 | 3 48 | nfcxfr |  |-  F/_ n A | 
						
							| 50 |  | nfmpt1 |  |-  F/_ n ( n e. NN |-> ( A ` ( 2 x. n ) ) ) | 
						
							| 51 | 4 50 | nfcxfr |  |-  F/_ n D | 
						
							| 52 |  | faccl |  |-  ( n e. NN0 -> ( ! ` n ) e. NN ) | 
						
							| 53 | 11 52 | syl |  |-  ( n e. NN -> ( ! ` n ) e. NN ) | 
						
							| 54 | 53 | nnrpd |  |-  ( n e. NN -> ( ! ` n ) e. RR+ ) | 
						
							| 55 |  | 2rp |  |-  2 e. RR+ | 
						
							| 56 | 55 | a1i |  |-  ( n e. NN -> 2 e. RR+ ) | 
						
							| 57 |  | nnrp |  |-  ( n e. NN -> n e. RR+ ) | 
						
							| 58 | 56 57 | rpmulcld |  |-  ( n e. NN -> ( 2 x. n ) e. RR+ ) | 
						
							| 59 | 58 | rpsqrtcld |  |-  ( n e. NN -> ( sqrt ` ( 2 x. n ) ) e. RR+ ) | 
						
							| 60 |  | epr |  |-  _e e. RR+ | 
						
							| 61 | 60 | a1i |  |-  ( n e. NN -> _e e. RR+ ) | 
						
							| 62 | 57 61 | rpdivcld |  |-  ( n e. NN -> ( n / _e ) e. RR+ ) | 
						
							| 63 |  | nnz |  |-  ( n e. NN -> n e. ZZ ) | 
						
							| 64 | 62 63 | rpexpcld |  |-  ( n e. NN -> ( ( n / _e ) ^ n ) e. RR+ ) | 
						
							| 65 | 59 64 | rpmulcld |  |-  ( n e. NN -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) e. RR+ ) | 
						
							| 66 | 54 65 | rpdivcld |  |-  ( n e. NN -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) e. RR+ ) | 
						
							| 67 | 3 66 | fmpti |  |-  A : NN --> RR+ | 
						
							| 68 | 67 | a1i |  |-  ( ph -> A : NN --> RR+ ) | 
						
							| 69 |  | eqid |  |-  ( n e. NN |-> ( ( A ` n ) ^ 4 ) ) = ( n e. NN |-> ( ( A ` n ) ^ 4 ) ) | 
						
							| 70 |  | eqid |  |-  ( n e. NN |-> ( ( D ` n ) ^ 2 ) ) = ( n e. NN |-> ( ( D ` n ) ^ 2 ) ) | 
						
							| 71 | 67 | a1i |  |-  ( n e. NN -> A : NN --> RR+ ) | 
						
							| 72 |  | 2nn |  |-  2 e. NN | 
						
							| 73 | 72 | a1i |  |-  ( n e. NN -> 2 e. NN ) | 
						
							| 74 |  | id |  |-  ( n e. NN -> n e. NN ) | 
						
							| 75 | 73 74 | nnmulcld |  |-  ( n e. NN -> ( 2 x. n ) e. NN ) | 
						
							| 76 | 71 75 | ffvelcdmd |  |-  ( n e. NN -> ( A ` ( 2 x. n ) ) e. RR+ ) | 
						
							| 77 | 4 | fvmpt2 |  |-  ( ( n e. NN /\ ( A ` ( 2 x. n ) ) e. RR+ ) -> ( D ` n ) = ( A ` ( 2 x. n ) ) ) | 
						
							| 78 | 76 77 | mpdan |  |-  ( n e. NN -> ( D ` n ) = ( A ` ( 2 x. n ) ) ) | 
						
							| 79 | 78 76 | eqeltrd |  |-  ( n e. NN -> ( D ` n ) e. RR+ ) | 
						
							| 80 | 79 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( D ` n ) e. RR+ ) | 
						
							| 81 | 1 49 51 4 68 7 69 70 80 9 10 | stirlinglem8 |  |-  ( ph -> F ~~> ( C ^ 2 ) ) | 
						
							| 82 |  | nnex |  |-  NN e. _V | 
						
							| 83 | 82 | mptex |  |-  ( n e. NN |-> ( ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) e. _V | 
						
							| 84 | 6 83 | eqeltri |  |-  V e. _V | 
						
							| 85 | 84 | a1i |  |-  ( ph -> V e. _V ) | 
						
							| 86 |  | eqid |  |-  ( n e. NN |-> ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) = ( n e. NN |-> ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) | 
						
							| 87 |  | eqid |  |-  ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) = ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 88 |  | eqid |  |-  ( n e. NN |-> ( 1 / n ) ) = ( n e. NN |-> ( 1 / n ) ) | 
						
							| 89 | 8 86 87 88 | stirlinglem1 |  |-  H ~~> ( 1 / 2 ) | 
						
							| 90 | 89 | a1i |  |-  ( ph -> H ~~> ( 1 / 2 ) ) | 
						
							| 91 | 53 | nncnd |  |-  ( n e. NN -> ( ! ` n ) e. CC ) | 
						
							| 92 | 37 28 | mulcld |  |-  ( n e. NN -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) e. CC ) | 
						
							| 93 | 58 | sqrtgt0d |  |-  ( n e. NN -> 0 < ( sqrt ` ( 2 x. n ) ) ) | 
						
							| 94 | 93 | gt0ne0d |  |-  ( n e. NN -> ( sqrt ` ( 2 x. n ) ) =/= 0 ) | 
						
							| 95 |  | nnne0 |  |-  ( n e. NN -> n =/= 0 ) | 
						
							| 96 | 17 23 95 26 | divne0d |  |-  ( n e. NN -> ( n / _e ) =/= 0 ) | 
						
							| 97 | 27 96 63 | expne0d |  |-  ( n e. NN -> ( ( n / _e ) ^ n ) =/= 0 ) | 
						
							| 98 | 37 28 94 97 | mulne0d |  |-  ( n e. NN -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) =/= 0 ) | 
						
							| 99 | 91 92 98 | divcld |  |-  ( n e. NN -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) e. CC ) | 
						
							| 100 | 3 | fvmpt2 |  |-  ( ( n e. NN /\ ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) e. CC ) -> ( A ` n ) = ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 101 | 99 100 | mpdan |  |-  ( n e. NN -> ( A ` n ) = ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 102 | 101 99 | eqeltrd |  |-  ( n e. NN -> ( A ` n ) e. CC ) | 
						
							| 103 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 104 | 103 | a1i |  |-  ( n e. NN -> 4 e. NN0 ) | 
						
							| 105 | 102 104 | expcld |  |-  ( n e. NN -> ( ( A ` n ) ^ 4 ) e. CC ) | 
						
							| 106 | 79 | rpcnd |  |-  ( n e. NN -> ( D ` n ) e. CC ) | 
						
							| 107 | 106 | sqcld |  |-  ( n e. NN -> ( ( D ` n ) ^ 2 ) e. CC ) | 
						
							| 108 | 79 | rpne0d |  |-  ( n e. NN -> ( D ` n ) =/= 0 ) | 
						
							| 109 |  | 2z |  |-  2 e. ZZ | 
						
							| 110 | 109 | a1i |  |-  ( n e. NN -> 2 e. ZZ ) | 
						
							| 111 | 106 108 110 | expne0d |  |-  ( n e. NN -> ( ( D ` n ) ^ 2 ) =/= 0 ) | 
						
							| 112 | 105 107 111 | divcld |  |-  ( n e. NN -> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) e. CC ) | 
						
							| 113 | 7 | fvmpt2 |  |-  ( ( n e. NN /\ ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) e. CC ) -> ( F ` n ) = ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) | 
						
							| 114 | 112 113 | mpdan |  |-  ( n e. NN -> ( F ` n ) = ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) | 
						
							| 115 | 114 112 | eqeltrd |  |-  ( n e. NN -> ( F ` n ) e. CC ) | 
						
							| 116 | 115 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) e. CC ) | 
						
							| 117 | 17 | sqcld |  |-  ( n e. NN -> ( n ^ 2 ) e. CC ) | 
						
							| 118 |  | 1cnd |  |-  ( n e. NN -> 1 e. CC ) | 
						
							| 119 | 36 118 | addcld |  |-  ( n e. NN -> ( ( 2 x. n ) + 1 ) e. CC ) | 
						
							| 120 | 17 119 | mulcld |  |-  ( n e. NN -> ( n x. ( ( 2 x. n ) + 1 ) ) e. CC ) | 
						
							| 121 | 75 | nnred |  |-  ( n e. NN -> ( 2 x. n ) e. RR ) | 
						
							| 122 |  | 1red |  |-  ( n e. NN -> 1 e. RR ) | 
						
							| 123 | 75 | nngt0d |  |-  ( n e. NN -> 0 < ( 2 x. n ) ) | 
						
							| 124 |  | 0lt1 |  |-  0 < 1 | 
						
							| 125 | 124 | a1i |  |-  ( n e. NN -> 0 < 1 ) | 
						
							| 126 | 121 122 123 125 | addgt0d |  |-  ( n e. NN -> 0 < ( ( 2 x. n ) + 1 ) ) | 
						
							| 127 | 126 | gt0ne0d |  |-  ( n e. NN -> ( ( 2 x. n ) + 1 ) =/= 0 ) | 
						
							| 128 | 17 119 95 127 | mulne0d |  |-  ( n e. NN -> ( n x. ( ( 2 x. n ) + 1 ) ) =/= 0 ) | 
						
							| 129 | 117 120 128 | divcld |  |-  ( n e. NN -> ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) e. CC ) | 
						
							| 130 | 8 | fvmpt2 |  |-  ( ( n e. NN /\ ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) e. CC ) -> ( H ` n ) = ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) | 
						
							| 131 | 129 130 | mpdan |  |-  ( n e. NN -> ( H ` n ) = ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) | 
						
							| 132 | 131 129 | eqeltrd |  |-  ( n e. NN -> ( H ` n ) e. CC ) | 
						
							| 133 | 132 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( H ` n ) e. CC ) | 
						
							| 134 | 112 129 | mulcld |  |-  ( n e. NN -> ( ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) x. ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) e. CC ) | 
						
							| 135 | 3 4 5 6 | stirlinglem3 |  |-  V = ( n e. NN |-> ( ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) x. ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) ) | 
						
							| 136 | 135 | fvmpt2 |  |-  ( ( n e. NN /\ ( ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) x. ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) e. CC ) -> ( V ` n ) = ( ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) x. ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) ) | 
						
							| 137 | 134 136 | mpdan |  |-  ( n e. NN -> ( V ` n ) = ( ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) x. ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) ) | 
						
							| 138 | 114 131 | oveq12d |  |-  ( n e. NN -> ( ( F ` n ) x. ( H ` n ) ) = ( ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) x. ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) ) | 
						
							| 139 | 137 138 | eqtr4d |  |-  ( n e. NN -> ( V ` n ) = ( ( F ` n ) x. ( H ` n ) ) ) | 
						
							| 140 | 139 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( V ` n ) = ( ( F ` n ) x. ( H ` n ) ) ) | 
						
							| 141 | 1 41 43 45 46 47 81 85 90 116 133 140 | climmulf |  |-  ( ph -> V ~~> ( ( C ^ 2 ) x. ( 1 / 2 ) ) ) | 
						
							| 142 | 6 | wallispi2 |  |-  V ~~> ( _pi / 2 ) | 
						
							| 143 |  | climuni |  |-  ( ( V ~~> ( ( C ^ 2 ) x. ( 1 / 2 ) ) /\ V ~~> ( _pi / 2 ) ) -> ( ( C ^ 2 ) x. ( 1 / 2 ) ) = ( _pi / 2 ) ) | 
						
							| 144 | 141 142 143 | sylancl |  |-  ( ph -> ( ( C ^ 2 ) x. ( 1 / 2 ) ) = ( _pi / 2 ) ) | 
						
							| 145 | 144 | oveq1d |  |-  ( ph -> ( ( ( C ^ 2 ) x. ( 1 / 2 ) ) / ( 1 / 2 ) ) = ( ( _pi / 2 ) / ( 1 / 2 ) ) ) | 
						
							| 146 | 9 | rpcnd |  |-  ( ph -> C e. CC ) | 
						
							| 147 | 146 | sqcld |  |-  ( ph -> ( C ^ 2 ) e. CC ) | 
						
							| 148 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 149 | 148 | halfcld |  |-  ( ph -> ( 1 / 2 ) e. CC ) | 
						
							| 150 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 151 |  | 2pos |  |-  0 < 2 | 
						
							| 152 | 151 | a1i |  |-  ( ph -> 0 < 2 ) | 
						
							| 153 | 152 | gt0ne0d |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 154 | 150 153 | recne0d |  |-  ( ph -> ( 1 / 2 ) =/= 0 ) | 
						
							| 155 | 147 149 154 | divcan4d |  |-  ( ph -> ( ( ( C ^ 2 ) x. ( 1 / 2 ) ) / ( 1 / 2 ) ) = ( C ^ 2 ) ) | 
						
							| 156 | 14 | a1i |  |-  ( ph -> _pi e. CC ) | 
						
							| 157 | 124 | a1i |  |-  ( ph -> 0 < 1 ) | 
						
							| 158 | 157 | gt0ne0d |  |-  ( ph -> 1 =/= 0 ) | 
						
							| 159 | 156 148 150 158 153 | divcan7d |  |-  ( ph -> ( ( _pi / 2 ) / ( 1 / 2 ) ) = ( _pi / 1 ) ) | 
						
							| 160 | 156 | div1d |  |-  ( ph -> ( _pi / 1 ) = _pi ) | 
						
							| 161 | 159 160 | eqtrd |  |-  ( ph -> ( ( _pi / 2 ) / ( 1 / 2 ) ) = _pi ) | 
						
							| 162 | 145 155 161 | 3eqtr3d |  |-  ( ph -> ( C ^ 2 ) = _pi ) | 
						
							| 163 | 162 | fveq2d |  |-  ( ph -> ( sqrt ` ( C ^ 2 ) ) = ( sqrt ` _pi ) ) | 
						
							| 164 | 9 | rprege0d |  |-  ( ph -> ( C e. RR /\ 0 <_ C ) ) | 
						
							| 165 |  | sqrtsq |  |-  ( ( C e. RR /\ 0 <_ C ) -> ( sqrt ` ( C ^ 2 ) ) = C ) | 
						
							| 166 | 164 165 | syl |  |-  ( ph -> ( sqrt ` ( C ^ 2 ) ) = C ) | 
						
							| 167 | 163 166 | eqtr3d |  |-  ( ph -> ( sqrt ` _pi ) = C ) | 
						
							| 168 | 167 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( sqrt ` _pi ) = C ) | 
						
							| 169 | 168 | oveq1d |  |-  ( ( ph /\ n e. NN ) -> ( ( sqrt ` _pi ) x. ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( C x. ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 170 | 146 | adantr |  |-  ( ( ph /\ n e. NN ) -> C e. CC ) | 
						
							| 171 | 92 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) e. CC ) | 
						
							| 172 | 170 171 | mulcomd |  |-  ( ( ph /\ n e. NN ) -> ( C x. ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) x. C ) ) | 
						
							| 173 | 39 169 172 | 3eqtrd |  |-  ( ( ph /\ n e. NN ) -> ( ( ( sqrt ` _pi ) x. ( sqrt ` ( 2 x. n ) ) ) x. ( ( n / _e ) ^ n ) ) = ( ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) x. C ) ) | 
						
							| 174 | 173 | oveq2d |  |-  ( ( ph /\ n e. NN ) -> ( ( ! ` n ) / ( ( ( sqrt ` _pi ) x. ( sqrt ` ( 2 x. n ) ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ! ` n ) / ( ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) x. C ) ) ) | 
						
							| 175 |  | 2re |  |-  2 e. RR | 
						
							| 176 | 175 | a1i |  |-  ( ( ph /\ n e. NN ) -> 2 e. RR ) | 
						
							| 177 |  | pire |  |-  _pi e. RR | 
						
							| 178 | 177 | a1i |  |-  ( ( ph /\ n e. NN ) -> _pi e. RR ) | 
						
							| 179 | 176 178 | remulcld |  |-  ( ( ph /\ n e. NN ) -> ( 2 x. _pi ) e. RR ) | 
						
							| 180 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 181 | 180 | a1i |  |-  ( ( ph /\ n e. NN ) -> 0 <_ 2 ) | 
						
							| 182 |  | 0re |  |-  0 e. RR | 
						
							| 183 |  | pipos |  |-  0 < _pi | 
						
							| 184 | 182 177 183 | ltleii |  |-  0 <_ _pi | 
						
							| 185 | 184 | a1i |  |-  ( ( ph /\ n e. NN ) -> 0 <_ _pi ) | 
						
							| 186 | 176 178 181 185 | mulge0d |  |-  ( ( ph /\ n e. NN ) -> 0 <_ ( 2 x. _pi ) ) | 
						
							| 187 | 12 | nn0red |  |-  ( ( ph /\ n e. NN ) -> n e. RR ) | 
						
							| 188 | 12 | nn0ge0d |  |-  ( ( ph /\ n e. NN ) -> 0 <_ n ) | 
						
							| 189 | 179 186 187 188 | sqrtmuld |  |-  ( ( ph /\ n e. NN ) -> ( sqrt ` ( ( 2 x. _pi ) x. n ) ) = ( ( sqrt ` ( 2 x. _pi ) ) x. ( sqrt ` n ) ) ) | 
						
							| 190 | 176 181 178 185 | sqrtmuld |  |-  ( ( ph /\ n e. NN ) -> ( sqrt ` ( 2 x. _pi ) ) = ( ( sqrt ` 2 ) x. ( sqrt ` _pi ) ) ) | 
						
							| 191 | 190 | oveq1d |  |-  ( ( ph /\ n e. NN ) -> ( ( sqrt ` ( 2 x. _pi ) ) x. ( sqrt ` n ) ) = ( ( ( sqrt ` 2 ) x. ( sqrt ` _pi ) ) x. ( sqrt ` n ) ) ) | 
						
							| 192 | 13 | sqrtcld |  |-  ( ( ph /\ n e. NN ) -> ( sqrt ` 2 ) e. CC ) | 
						
							| 193 | 18 | sqrtcld |  |-  ( ( ph /\ n e. NN ) -> ( sqrt ` n ) e. CC ) | 
						
							| 194 | 192 34 193 | mulassd |  |-  ( ( ph /\ n e. NN ) -> ( ( ( sqrt ` 2 ) x. ( sqrt ` _pi ) ) x. ( sqrt ` n ) ) = ( ( sqrt ` 2 ) x. ( ( sqrt ` _pi ) x. ( sqrt ` n ) ) ) ) | 
						
							| 195 | 192 34 193 | mul12d |  |-  ( ( ph /\ n e. NN ) -> ( ( sqrt ` 2 ) x. ( ( sqrt ` _pi ) x. ( sqrt ` n ) ) ) = ( ( sqrt ` _pi ) x. ( ( sqrt ` 2 ) x. ( sqrt ` n ) ) ) ) | 
						
							| 196 | 176 181 187 188 | sqrtmuld |  |-  ( ( ph /\ n e. NN ) -> ( sqrt ` ( 2 x. n ) ) = ( ( sqrt ` 2 ) x. ( sqrt ` n ) ) ) | 
						
							| 197 | 196 | eqcomd |  |-  ( ( ph /\ n e. NN ) -> ( ( sqrt ` 2 ) x. ( sqrt ` n ) ) = ( sqrt ` ( 2 x. n ) ) ) | 
						
							| 198 | 197 | oveq2d |  |-  ( ( ph /\ n e. NN ) -> ( ( sqrt ` _pi ) x. ( ( sqrt ` 2 ) x. ( sqrt ` n ) ) ) = ( ( sqrt ` _pi ) x. ( sqrt ` ( 2 x. n ) ) ) ) | 
						
							| 199 | 195 198 | eqtrd |  |-  ( ( ph /\ n e. NN ) -> ( ( sqrt ` 2 ) x. ( ( sqrt ` _pi ) x. ( sqrt ` n ) ) ) = ( ( sqrt ` _pi ) x. ( sqrt ` ( 2 x. n ) ) ) ) | 
						
							| 200 | 191 194 199 | 3eqtrd |  |-  ( ( ph /\ n e. NN ) -> ( ( sqrt ` ( 2 x. _pi ) ) x. ( sqrt ` n ) ) = ( ( sqrt ` _pi ) x. ( sqrt ` ( 2 x. n ) ) ) ) | 
						
							| 201 | 189 200 | eqtrd |  |-  ( ( ph /\ n e. NN ) -> ( sqrt ` ( ( 2 x. _pi ) x. n ) ) = ( ( sqrt ` _pi ) x. ( sqrt ` ( 2 x. n ) ) ) ) | 
						
							| 202 | 201 | oveq1d |  |-  ( ( ph /\ n e. NN ) -> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) = ( ( ( sqrt ` _pi ) x. ( sqrt ` ( 2 x. n ) ) ) x. ( ( n / _e ) ^ n ) ) ) | 
						
							| 203 | 202 | oveq2d |  |-  ( ( ph /\ n e. NN ) -> ( ( ! ` n ) / ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ! ` n ) / ( ( ( sqrt ` _pi ) x. ( sqrt ` ( 2 x. n ) ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 204 | 91 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( ! ` n ) e. CC ) | 
						
							| 205 | 94 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( sqrt ` ( 2 x. n ) ) =/= 0 ) | 
						
							| 206 | 22 | a1i |  |-  ( ( ph /\ n e. NN ) -> _e e. CC ) | 
						
							| 207 | 25 | a1i |  |-  ( ( ph /\ n e. NN ) -> _e =/= 0 ) | 
						
							| 208 | 18 206 207 | divcld |  |-  ( ( ph /\ n e. NN ) -> ( n / _e ) e. CC ) | 
						
							| 209 | 95 | adantl |  |-  ( ( ph /\ n e. NN ) -> n =/= 0 ) | 
						
							| 210 | 18 206 209 207 | divne0d |  |-  ( ( ph /\ n e. NN ) -> ( n / _e ) =/= 0 ) | 
						
							| 211 | 63 | adantl |  |-  ( ( ph /\ n e. NN ) -> n e. ZZ ) | 
						
							| 212 | 208 210 211 | expne0d |  |-  ( ( ph /\ n e. NN ) -> ( ( n / _e ) ^ n ) =/= 0 ) | 
						
							| 213 | 38 29 205 212 | mulne0d |  |-  ( ( ph /\ n e. NN ) -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) =/= 0 ) | 
						
							| 214 | 9 | rpne0d |  |-  ( ph -> C =/= 0 ) | 
						
							| 215 | 214 | adantr |  |-  ( ( ph /\ n e. NN ) -> C =/= 0 ) | 
						
							| 216 | 204 171 170 213 215 | divdiv1d |  |-  ( ( ph /\ n e. NN ) -> ( ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) / C ) = ( ( ! ` n ) / ( ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) x. C ) ) ) | 
						
							| 217 | 174 203 216 | 3eqtr4d |  |-  ( ( ph /\ n e. NN ) -> ( ( ! ` n ) / ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) / C ) ) | 
						
							| 218 | 99 | ancli |  |-  ( n e. NN -> ( n e. NN /\ ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) e. CC ) ) | 
						
							| 219 | 218 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( n e. NN /\ ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) e. CC ) ) | 
						
							| 220 | 219 100 | syl |  |-  ( ( ph /\ n e. NN ) -> ( A ` n ) = ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 221 | 220 | eqcomd |  |-  ( ( ph /\ n e. NN ) -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( A ` n ) ) | 
						
							| 222 | 221 | oveq1d |  |-  ( ( ph /\ n e. NN ) -> ( ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) / C ) = ( ( A ` n ) / C ) ) | 
						
							| 223 | 33 217 222 | 3eqtrd |  |-  ( ( ph /\ n e. NN ) -> ( ( ! ` n ) / ( S ` n ) ) = ( ( A ` n ) / C ) ) | 
						
							| 224 | 1 223 | mpteq2da |  |-  ( ph -> ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) = ( n e. NN |-> ( ( A ` n ) / C ) ) ) | 
						
							| 225 | 102 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( A ` n ) e. CC ) | 
						
							| 226 | 225 170 215 | divrec2d |  |-  ( ( ph /\ n e. NN ) -> ( ( A ` n ) / C ) = ( ( 1 / C ) x. ( A ` n ) ) ) | 
						
							| 227 | 1 226 | mpteq2da |  |-  ( ph -> ( n e. NN |-> ( ( A ` n ) / C ) ) = ( n e. NN |-> ( ( 1 / C ) x. ( A ` n ) ) ) ) | 
						
							| 228 | 146 214 | reccld |  |-  ( ph -> ( 1 / C ) e. CC ) | 
						
							| 229 | 82 | mptex |  |-  ( n e. NN |-> ( ( 1 / C ) x. ( A ` n ) ) ) e. _V | 
						
							| 230 | 229 | a1i |  |-  ( ph -> ( n e. NN |-> ( ( 1 / C ) x. ( A ` n ) ) ) e. _V ) | 
						
							| 231 | 3 | a1i |  |-  ( k e. NN -> A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ) | 
						
							| 232 |  | simpr |  |-  ( ( k e. NN /\ n = k ) -> n = k ) | 
						
							| 233 | 232 | fveq2d |  |-  ( ( k e. NN /\ n = k ) -> ( ! ` n ) = ( ! ` k ) ) | 
						
							| 234 | 232 | oveq2d |  |-  ( ( k e. NN /\ n = k ) -> ( 2 x. n ) = ( 2 x. k ) ) | 
						
							| 235 | 234 | fveq2d |  |-  ( ( k e. NN /\ n = k ) -> ( sqrt ` ( 2 x. n ) ) = ( sqrt ` ( 2 x. k ) ) ) | 
						
							| 236 | 232 | oveq1d |  |-  ( ( k e. NN /\ n = k ) -> ( n / _e ) = ( k / _e ) ) | 
						
							| 237 | 236 232 | oveq12d |  |-  ( ( k e. NN /\ n = k ) -> ( ( n / _e ) ^ n ) = ( ( k / _e ) ^ k ) ) | 
						
							| 238 | 235 237 | oveq12d |  |-  ( ( k e. NN /\ n = k ) -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) = ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) | 
						
							| 239 | 233 238 | oveq12d |  |-  ( ( k e. NN /\ n = k ) -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) | 
						
							| 240 |  | id |  |-  ( k e. NN -> k e. NN ) | 
						
							| 241 |  | nnnn0 |  |-  ( k e. NN -> k e. NN0 ) | 
						
							| 242 |  | faccl |  |-  ( k e. NN0 -> ( ! ` k ) e. NN ) | 
						
							| 243 |  | nncn |  |-  ( ( ! ` k ) e. NN -> ( ! ` k ) e. CC ) | 
						
							| 244 | 241 242 243 | 3syl |  |-  ( k e. NN -> ( ! ` k ) e. CC ) | 
						
							| 245 |  | 2cnd |  |-  ( k e. NN -> 2 e. CC ) | 
						
							| 246 |  | nncn |  |-  ( k e. NN -> k e. CC ) | 
						
							| 247 | 245 246 | mulcld |  |-  ( k e. NN -> ( 2 x. k ) e. CC ) | 
						
							| 248 | 247 | sqrtcld |  |-  ( k e. NN -> ( sqrt ` ( 2 x. k ) ) e. CC ) | 
						
							| 249 | 22 | a1i |  |-  ( k e. NN -> _e e. CC ) | 
						
							| 250 | 25 | a1i |  |-  ( k e. NN -> _e =/= 0 ) | 
						
							| 251 | 246 249 250 | divcld |  |-  ( k e. NN -> ( k / _e ) e. CC ) | 
						
							| 252 | 251 241 | expcld |  |-  ( k e. NN -> ( ( k / _e ) ^ k ) e. CC ) | 
						
							| 253 | 248 252 | mulcld |  |-  ( k e. NN -> ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) e. CC ) | 
						
							| 254 | 55 | a1i |  |-  ( k e. NN -> 2 e. RR+ ) | 
						
							| 255 |  | nnrp |  |-  ( k e. NN -> k e. RR+ ) | 
						
							| 256 | 254 255 | rpmulcld |  |-  ( k e. NN -> ( 2 x. k ) e. RR+ ) | 
						
							| 257 | 256 | sqrtgt0d |  |-  ( k e. NN -> 0 < ( sqrt ` ( 2 x. k ) ) ) | 
						
							| 258 | 257 | gt0ne0d |  |-  ( k e. NN -> ( sqrt ` ( 2 x. k ) ) =/= 0 ) | 
						
							| 259 |  | nnne0 |  |-  ( k e. NN -> k =/= 0 ) | 
						
							| 260 | 246 249 259 250 | divne0d |  |-  ( k e. NN -> ( k / _e ) =/= 0 ) | 
						
							| 261 |  | nnz |  |-  ( k e. NN -> k e. ZZ ) | 
						
							| 262 | 251 260 261 | expne0d |  |-  ( k e. NN -> ( ( k / _e ) ^ k ) =/= 0 ) | 
						
							| 263 | 248 252 258 262 | mulne0d |  |-  ( k e. NN -> ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) =/= 0 ) | 
						
							| 264 | 244 253 263 | divcld |  |-  ( k e. NN -> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) e. CC ) | 
						
							| 265 | 231 239 240 264 | fvmptd |  |-  ( k e. NN -> ( A ` k ) = ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) | 
						
							| 266 | 265 264 | eqeltrd |  |-  ( k e. NN -> ( A ` k ) e. CC ) | 
						
							| 267 | 266 | adantl |  |-  ( ( ph /\ k e. NN ) -> ( A ` k ) e. CC ) | 
						
							| 268 |  | nfcv |  |-  F/_ k ( ( 1 / C ) x. ( A ` n ) ) | 
						
							| 269 |  | nfcv |  |-  F/_ n 1 | 
						
							| 270 |  | nfcv |  |-  F/_ n / | 
						
							| 271 |  | nfcv |  |-  F/_ n C | 
						
							| 272 | 269 270 271 | nfov |  |-  F/_ n ( 1 / C ) | 
						
							| 273 |  | nfcv |  |-  F/_ n x. | 
						
							| 274 |  | nfcv |  |-  F/_ n k | 
						
							| 275 | 49 274 | nffv |  |-  F/_ n ( A ` k ) | 
						
							| 276 | 272 273 275 | nfov |  |-  F/_ n ( ( 1 / C ) x. ( A ` k ) ) | 
						
							| 277 |  | fveq2 |  |-  ( n = k -> ( A ` n ) = ( A ` k ) ) | 
						
							| 278 | 277 | oveq2d |  |-  ( n = k -> ( ( 1 / C ) x. ( A ` n ) ) = ( ( 1 / C ) x. ( A ` k ) ) ) | 
						
							| 279 | 268 276 278 | cbvmpt |  |-  ( n e. NN |-> ( ( 1 / C ) x. ( A ` n ) ) ) = ( k e. NN |-> ( ( 1 / C ) x. ( A ` k ) ) ) | 
						
							| 280 | 279 | a1i |  |-  ( ( ph /\ k e. NN ) -> ( n e. NN |-> ( ( 1 / C ) x. ( A ` n ) ) ) = ( k e. NN |-> ( ( 1 / C ) x. ( A ` k ) ) ) ) | 
						
							| 281 | 280 | fveq1d |  |-  ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( ( 1 / C ) x. ( A ` n ) ) ) ` k ) = ( ( k e. NN |-> ( ( 1 / C ) x. ( A ` k ) ) ) ` k ) ) | 
						
							| 282 |  | simpr |  |-  ( ( ph /\ k e. NN ) -> k e. NN ) | 
						
							| 283 | 146 | adantr |  |-  ( ( ph /\ k e. NN ) -> C e. CC ) | 
						
							| 284 | 214 | adantr |  |-  ( ( ph /\ k e. NN ) -> C =/= 0 ) | 
						
							| 285 | 283 284 | reccld |  |-  ( ( ph /\ k e. NN ) -> ( 1 / C ) e. CC ) | 
						
							| 286 | 285 267 | mulcld |  |-  ( ( ph /\ k e. NN ) -> ( ( 1 / C ) x. ( A ` k ) ) e. CC ) | 
						
							| 287 |  | eqid |  |-  ( k e. NN |-> ( ( 1 / C ) x. ( A ` k ) ) ) = ( k e. NN |-> ( ( 1 / C ) x. ( A ` k ) ) ) | 
						
							| 288 | 287 | fvmpt2 |  |-  ( ( k e. NN /\ ( ( 1 / C ) x. ( A ` k ) ) e. CC ) -> ( ( k e. NN |-> ( ( 1 / C ) x. ( A ` k ) ) ) ` k ) = ( ( 1 / C ) x. ( A ` k ) ) ) | 
						
							| 289 | 282 286 288 | syl2anc |  |-  ( ( ph /\ k e. NN ) -> ( ( k e. NN |-> ( ( 1 / C ) x. ( A ` k ) ) ) ` k ) = ( ( 1 / C ) x. ( A ` k ) ) ) | 
						
							| 290 | 281 289 | eqtrd |  |-  ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( ( 1 / C ) x. ( A ` n ) ) ) ` k ) = ( ( 1 / C ) x. ( A ` k ) ) ) | 
						
							| 291 | 46 47 10 228 230 267 290 | climmulc2 |  |-  ( ph -> ( n e. NN |-> ( ( 1 / C ) x. ( A ` n ) ) ) ~~> ( ( 1 / C ) x. C ) ) | 
						
							| 292 | 146 214 | recid2d |  |-  ( ph -> ( ( 1 / C ) x. C ) = 1 ) | 
						
							| 293 | 291 292 | breqtrd |  |-  ( ph -> ( n e. NN |-> ( ( 1 / C ) x. ( A ` n ) ) ) ~~> 1 ) | 
						
							| 294 | 227 293 | eqbrtrd |  |-  ( ph -> ( n e. NN |-> ( ( A ` n ) / C ) ) ~~> 1 ) | 
						
							| 295 | 224 294 | eqbrtrd |  |-  ( ph -> ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) ~~> 1 ) |