Step |
Hyp |
Ref |
Expression |
1 |
|
stirlinglem4.1 |
|- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
2 |
|
stirlinglem4.2 |
|- B = ( n e. NN |-> ( log ` ( A ` n ) ) ) |
3 |
|
stirlinglem4.3 |
|- J = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) |
4 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
5 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
6 |
5
|
nn0ge0d |
|- ( N e. NN -> 0 <_ N ) |
7 |
4 6
|
ge0p1rpd |
|- ( N e. NN -> ( N + 1 ) e. RR+ ) |
8 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
9 |
7 8
|
rpdivcld |
|- ( N e. NN -> ( ( N + 1 ) / N ) e. RR+ ) |
10 |
9
|
rpsqrtcld |
|- ( N e. NN -> ( sqrt ` ( ( N + 1 ) / N ) ) e. RR+ ) |
11 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
12 |
9 11
|
rpexpcld |
|- ( N e. NN -> ( ( ( N + 1 ) / N ) ^ N ) e. RR+ ) |
13 |
10 12
|
rpmulcld |
|- ( N e. NN -> ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) e. RR+ ) |
14 |
|
epr |
|- _e e. RR+ |
15 |
14
|
a1i |
|- ( N e. NN -> _e e. RR+ ) |
16 |
13 15
|
relogdivd |
|- ( N e. NN -> ( log ` ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) / _e ) ) = ( ( log ` ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) - ( log ` _e ) ) ) |
17 |
10 12
|
relogmuld |
|- ( N e. NN -> ( log ` ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) = ( ( log ` ( sqrt ` ( ( N + 1 ) / N ) ) ) + ( log ` ( ( ( N + 1 ) / N ) ^ N ) ) ) ) |
18 |
|
logsqrt |
|- ( ( ( N + 1 ) / N ) e. RR+ -> ( log ` ( sqrt ` ( ( N + 1 ) / N ) ) ) = ( ( log ` ( ( N + 1 ) / N ) ) / 2 ) ) |
19 |
9 18
|
syl |
|- ( N e. NN -> ( log ` ( sqrt ` ( ( N + 1 ) / N ) ) ) = ( ( log ` ( ( N + 1 ) / N ) ) / 2 ) ) |
20 |
|
relogexp |
|- ( ( ( ( N + 1 ) / N ) e. RR+ /\ N e. ZZ ) -> ( log ` ( ( ( N + 1 ) / N ) ^ N ) ) = ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) |
21 |
9 11 20
|
syl2anc |
|- ( N e. NN -> ( log ` ( ( ( N + 1 ) / N ) ^ N ) ) = ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) |
22 |
19 21
|
oveq12d |
|- ( N e. NN -> ( ( log ` ( sqrt ` ( ( N + 1 ) / N ) ) ) + ( log ` ( ( ( N + 1 ) / N ) ^ N ) ) ) = ( ( ( log ` ( ( N + 1 ) / N ) ) / 2 ) + ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) ) |
23 |
17 22
|
eqtrd |
|- ( N e. NN -> ( log ` ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) = ( ( ( log ` ( ( N + 1 ) / N ) ) / 2 ) + ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) ) |
24 |
|
peano2nn |
|- ( N e. NN -> ( N + 1 ) e. NN ) |
25 |
24
|
nncnd |
|- ( N e. NN -> ( N + 1 ) e. CC ) |
26 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
27 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
28 |
25 26 27
|
divcld |
|- ( N e. NN -> ( ( N + 1 ) / N ) e. CC ) |
29 |
24
|
nnne0d |
|- ( N e. NN -> ( N + 1 ) =/= 0 ) |
30 |
25 26 29 27
|
divne0d |
|- ( N e. NN -> ( ( N + 1 ) / N ) =/= 0 ) |
31 |
28 30
|
logcld |
|- ( N e. NN -> ( log ` ( ( N + 1 ) / N ) ) e. CC ) |
32 |
|
2cnd |
|- ( N e. NN -> 2 e. CC ) |
33 |
|
2rp |
|- 2 e. RR+ |
34 |
33
|
a1i |
|- ( N e. NN -> 2 e. RR+ ) |
35 |
34
|
rpne0d |
|- ( N e. NN -> 2 =/= 0 ) |
36 |
31 32 35
|
divrec2d |
|- ( N e. NN -> ( ( log ` ( ( N + 1 ) / N ) ) / 2 ) = ( ( 1 / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) |
37 |
36
|
oveq1d |
|- ( N e. NN -> ( ( ( log ` ( ( N + 1 ) / N ) ) / 2 ) + ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) = ( ( ( 1 / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) + ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) ) |
38 |
|
1cnd |
|- ( N e. NN -> 1 e. CC ) |
39 |
38
|
halfcld |
|- ( N e. NN -> ( 1 / 2 ) e. CC ) |
40 |
39 26 31
|
adddird |
|- ( N e. NN -> ( ( ( 1 / 2 ) + N ) x. ( log ` ( ( N + 1 ) / N ) ) ) = ( ( ( 1 / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) + ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) ) |
41 |
26 32 35
|
divcan4d |
|- ( N e. NN -> ( ( N x. 2 ) / 2 ) = N ) |
42 |
26 32
|
mulcomd |
|- ( N e. NN -> ( N x. 2 ) = ( 2 x. N ) ) |
43 |
42
|
oveq1d |
|- ( N e. NN -> ( ( N x. 2 ) / 2 ) = ( ( 2 x. N ) / 2 ) ) |
44 |
41 43
|
eqtr3d |
|- ( N e. NN -> N = ( ( 2 x. N ) / 2 ) ) |
45 |
44
|
oveq2d |
|- ( N e. NN -> ( ( 1 / 2 ) + N ) = ( ( 1 / 2 ) + ( ( 2 x. N ) / 2 ) ) ) |
46 |
32 26
|
mulcld |
|- ( N e. NN -> ( 2 x. N ) e. CC ) |
47 |
38 46 32 35
|
divdird |
|- ( N e. NN -> ( ( 1 + ( 2 x. N ) ) / 2 ) = ( ( 1 / 2 ) + ( ( 2 x. N ) / 2 ) ) ) |
48 |
45 47
|
eqtr4d |
|- ( N e. NN -> ( ( 1 / 2 ) + N ) = ( ( 1 + ( 2 x. N ) ) / 2 ) ) |
49 |
48
|
oveq1d |
|- ( N e. NN -> ( ( ( 1 / 2 ) + N ) x. ( log ` ( ( N + 1 ) / N ) ) ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) |
50 |
40 49
|
eqtr3d |
|- ( N e. NN -> ( ( ( 1 / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) + ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) |
51 |
23 37 50
|
3eqtrd |
|- ( N e. NN -> ( log ` ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) |
52 |
|
loge |
|- ( log ` _e ) = 1 |
53 |
52
|
a1i |
|- ( N e. NN -> ( log ` _e ) = 1 ) |
54 |
51 53
|
oveq12d |
|- ( N e. NN -> ( ( log ` ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) - ( log ` _e ) ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
55 |
16 54
|
eqtrd |
|- ( N e. NN -> ( log ` ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) / _e ) ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
56 |
1
|
stirlinglem2 |
|- ( N e. NN -> ( A ` N ) e. RR+ ) |
57 |
56
|
relogcld |
|- ( N e. NN -> ( log ` ( A ` N ) ) e. RR ) |
58 |
|
nfcv |
|- F/_ n N |
59 |
|
nfcv |
|- F/_ n log |
60 |
|
nfmpt1 |
|- F/_ n ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
61 |
1 60
|
nfcxfr |
|- F/_ n A |
62 |
61 58
|
nffv |
|- F/_ n ( A ` N ) |
63 |
59 62
|
nffv |
|- F/_ n ( log ` ( A ` N ) ) |
64 |
|
2fveq3 |
|- ( n = N -> ( log ` ( A ` n ) ) = ( log ` ( A ` N ) ) ) |
65 |
58 63 64 2
|
fvmptf |
|- ( ( N e. NN /\ ( log ` ( A ` N ) ) e. RR ) -> ( B ` N ) = ( log ` ( A ` N ) ) ) |
66 |
57 65
|
mpdan |
|- ( N e. NN -> ( B ` N ) = ( log ` ( A ` N ) ) ) |
67 |
|
nfcv |
|- F/_ k ( log ` ( A ` n ) ) |
68 |
|
nfcv |
|- F/_ n k |
69 |
61 68
|
nffv |
|- F/_ n ( A ` k ) |
70 |
59 69
|
nffv |
|- F/_ n ( log ` ( A ` k ) ) |
71 |
|
2fveq3 |
|- ( n = k -> ( log ` ( A ` n ) ) = ( log ` ( A ` k ) ) ) |
72 |
67 70 71
|
cbvmpt |
|- ( n e. NN |-> ( log ` ( A ` n ) ) ) = ( k e. NN |-> ( log ` ( A ` k ) ) ) |
73 |
2 72
|
eqtri |
|- B = ( k e. NN |-> ( log ` ( A ` k ) ) ) |
74 |
73
|
a1i |
|- ( N e. NN -> B = ( k e. NN |-> ( log ` ( A ` k ) ) ) ) |
75 |
|
simpr |
|- ( ( N e. NN /\ k = ( N + 1 ) ) -> k = ( N + 1 ) ) |
76 |
75
|
fveq2d |
|- ( ( N e. NN /\ k = ( N + 1 ) ) -> ( A ` k ) = ( A ` ( N + 1 ) ) ) |
77 |
76
|
fveq2d |
|- ( ( N e. NN /\ k = ( N + 1 ) ) -> ( log ` ( A ` k ) ) = ( log ` ( A ` ( N + 1 ) ) ) ) |
78 |
1
|
stirlinglem2 |
|- ( ( N + 1 ) e. NN -> ( A ` ( N + 1 ) ) e. RR+ ) |
79 |
24 78
|
syl |
|- ( N e. NN -> ( A ` ( N + 1 ) ) e. RR+ ) |
80 |
79
|
relogcld |
|- ( N e. NN -> ( log ` ( A ` ( N + 1 ) ) ) e. RR ) |
81 |
74 77 24 80
|
fvmptd |
|- ( N e. NN -> ( B ` ( N + 1 ) ) = ( log ` ( A ` ( N + 1 ) ) ) ) |
82 |
66 81
|
oveq12d |
|- ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) = ( ( log ` ( A ` N ) ) - ( log ` ( A ` ( N + 1 ) ) ) ) ) |
83 |
56 79
|
relogdivd |
|- ( N e. NN -> ( log ` ( ( A ` N ) / ( A ` ( N + 1 ) ) ) ) = ( ( log ` ( A ` N ) ) - ( log ` ( A ` ( N + 1 ) ) ) ) ) |
84 |
|
faccl |
|- ( N e. NN0 -> ( ! ` N ) e. NN ) |
85 |
|
nnrp |
|- ( ( ! ` N ) e. NN -> ( ! ` N ) e. RR+ ) |
86 |
5 84 85
|
3syl |
|- ( N e. NN -> ( ! ` N ) e. RR+ ) |
87 |
34 8
|
rpmulcld |
|- ( N e. NN -> ( 2 x. N ) e. RR+ ) |
88 |
87
|
rpsqrtcld |
|- ( N e. NN -> ( sqrt ` ( 2 x. N ) ) e. RR+ ) |
89 |
8 15
|
rpdivcld |
|- ( N e. NN -> ( N / _e ) e. RR+ ) |
90 |
89 11
|
rpexpcld |
|- ( N e. NN -> ( ( N / _e ) ^ N ) e. RR+ ) |
91 |
88 90
|
rpmulcld |
|- ( N e. NN -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) e. RR+ ) |
92 |
86 91
|
rpdivcld |
|- ( N e. NN -> ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) |
93 |
1
|
a1i |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ) |
94 |
|
simpr |
|- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> n = N ) |
95 |
94
|
fveq2d |
|- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( ! ` n ) = ( ! ` N ) ) |
96 |
94
|
oveq2d |
|- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( 2 x. n ) = ( 2 x. N ) ) |
97 |
96
|
fveq2d |
|- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( sqrt ` ( 2 x. n ) ) = ( sqrt ` ( 2 x. N ) ) ) |
98 |
94
|
oveq1d |
|- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( n / _e ) = ( N / _e ) ) |
99 |
98 94
|
oveq12d |
|- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( ( n / _e ) ^ n ) = ( ( N / _e ) ^ N ) ) |
100 |
97 99
|
oveq12d |
|- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) = ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) |
101 |
95 100
|
oveq12d |
|- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
102 |
|
simpl |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> N e. NN ) |
103 |
86
|
rpcnd |
|- ( N e. NN -> ( ! ` N ) e. CC ) |
104 |
103
|
adantr |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ! ` N ) e. CC ) |
105 |
|
2cnd |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> 2 e. CC ) |
106 |
102
|
nncnd |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> N e. CC ) |
107 |
105 106
|
mulcld |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( 2 x. N ) e. CC ) |
108 |
107
|
sqrtcld |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( sqrt ` ( 2 x. N ) ) e. CC ) |
109 |
|
ere |
|- _e e. RR |
110 |
109
|
recni |
|- _e e. CC |
111 |
110
|
a1i |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> _e e. CC ) |
112 |
|
0re |
|- 0 e. RR |
113 |
|
epos |
|- 0 < _e |
114 |
112 113
|
gtneii |
|- _e =/= 0 |
115 |
114
|
a1i |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> _e =/= 0 ) |
116 |
106 111 115
|
divcld |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( N / _e ) e. CC ) |
117 |
102
|
nnnn0d |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> N e. NN0 ) |
118 |
116 117
|
expcld |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ( N / _e ) ^ N ) e. CC ) |
119 |
108 118
|
mulcld |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) e. CC ) |
120 |
88
|
rpne0d |
|- ( N e. NN -> ( sqrt ` ( 2 x. N ) ) =/= 0 ) |
121 |
120
|
adantr |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( sqrt ` ( 2 x. N ) ) =/= 0 ) |
122 |
102
|
nnne0d |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> N =/= 0 ) |
123 |
106 111 122 115
|
divne0d |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( N / _e ) =/= 0 ) |
124 |
102
|
nnzd |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> N e. ZZ ) |
125 |
116 123 124
|
expne0d |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ( N / _e ) ^ N ) =/= 0 ) |
126 |
108 118 121 125
|
mulne0d |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) =/= 0 ) |
127 |
104 119 126
|
divcld |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. CC ) |
128 |
93 101 102 127
|
fvmptd |
|- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( A ` N ) = ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
129 |
92 128
|
mpdan |
|- ( N e. NN -> ( A ` N ) = ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
130 |
|
nfcv |
|- F/_ k ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) |
131 |
|
nfcv |
|- F/_ n ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) |
132 |
|
fveq2 |
|- ( n = k -> ( ! ` n ) = ( ! ` k ) ) |
133 |
|
oveq2 |
|- ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) |
134 |
133
|
fveq2d |
|- ( n = k -> ( sqrt ` ( 2 x. n ) ) = ( sqrt ` ( 2 x. k ) ) ) |
135 |
|
oveq1 |
|- ( n = k -> ( n / _e ) = ( k / _e ) ) |
136 |
|
id |
|- ( n = k -> n = k ) |
137 |
135 136
|
oveq12d |
|- ( n = k -> ( ( n / _e ) ^ n ) = ( ( k / _e ) ^ k ) ) |
138 |
134 137
|
oveq12d |
|- ( n = k -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) = ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) |
139 |
132 138
|
oveq12d |
|- ( n = k -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) |
140 |
130 131 139
|
cbvmpt |
|- ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) = ( k e. NN |-> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) |
141 |
1 140
|
eqtri |
|- A = ( k e. NN |-> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) |
142 |
141
|
a1i |
|- ( N e. NN -> A = ( k e. NN |-> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) ) |
143 |
75
|
fveq2d |
|- ( ( N e. NN /\ k = ( N + 1 ) ) -> ( ! ` k ) = ( ! ` ( N + 1 ) ) ) |
144 |
75
|
oveq2d |
|- ( ( N e. NN /\ k = ( N + 1 ) ) -> ( 2 x. k ) = ( 2 x. ( N + 1 ) ) ) |
145 |
144
|
fveq2d |
|- ( ( N e. NN /\ k = ( N + 1 ) ) -> ( sqrt ` ( 2 x. k ) ) = ( sqrt ` ( 2 x. ( N + 1 ) ) ) ) |
146 |
75
|
oveq1d |
|- ( ( N e. NN /\ k = ( N + 1 ) ) -> ( k / _e ) = ( ( N + 1 ) / _e ) ) |
147 |
146 75
|
oveq12d |
|- ( ( N e. NN /\ k = ( N + 1 ) ) -> ( ( k / _e ) ^ k ) = ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) |
148 |
145 147
|
oveq12d |
|- ( ( N e. NN /\ k = ( N + 1 ) ) -> ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) = ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) |
149 |
143 148
|
oveq12d |
|- ( ( N e. NN /\ k = ( N + 1 ) ) -> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) = ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) |
150 |
24
|
nnnn0d |
|- ( N e. NN -> ( N + 1 ) e. NN0 ) |
151 |
|
faccl |
|- ( ( N + 1 ) e. NN0 -> ( ! ` ( N + 1 ) ) e. NN ) |
152 |
|
nnrp |
|- ( ( ! ` ( N + 1 ) ) e. NN -> ( ! ` ( N + 1 ) ) e. RR+ ) |
153 |
150 151 152
|
3syl |
|- ( N e. NN -> ( ! ` ( N + 1 ) ) e. RR+ ) |
154 |
34 7
|
rpmulcld |
|- ( N e. NN -> ( 2 x. ( N + 1 ) ) e. RR+ ) |
155 |
154
|
rpsqrtcld |
|- ( N e. NN -> ( sqrt ` ( 2 x. ( N + 1 ) ) ) e. RR+ ) |
156 |
7 15
|
rpdivcld |
|- ( N e. NN -> ( ( N + 1 ) / _e ) e. RR+ ) |
157 |
11
|
peano2zd |
|- ( N e. NN -> ( N + 1 ) e. ZZ ) |
158 |
156 157
|
rpexpcld |
|- ( N e. NN -> ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) e. RR+ ) |
159 |
155 158
|
rpmulcld |
|- ( N e. NN -> ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) e. RR+ ) |
160 |
153 159
|
rpdivcld |
|- ( N e. NN -> ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) e. RR+ ) |
161 |
142 149 24 160
|
fvmptd |
|- ( N e. NN -> ( A ` ( N + 1 ) ) = ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) |
162 |
129 161
|
oveq12d |
|- ( N e. NN -> ( ( A ` N ) / ( A ` ( N + 1 ) ) ) = ( ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) / ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) |
163 |
|
facp1 |
|- ( N e. NN0 -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
164 |
5 163
|
syl |
|- ( N e. NN -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
165 |
164
|
oveq1d |
|- ( N e. NN -> ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) = ( ( ( ! ` N ) x. ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) |
166 |
159
|
rpcnd |
|- ( N e. NN -> ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) e. CC ) |
167 |
159
|
rpne0d |
|- ( N e. NN -> ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) =/= 0 ) |
168 |
103 25 166 167
|
divassd |
|- ( N e. NN -> ( ( ( ! ` N ) x. ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) = ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) |
169 |
165 168
|
eqtrd |
|- ( N e. NN -> ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) = ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) |
170 |
169
|
oveq2d |
|- ( N e. NN -> ( ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) / ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) = ( ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) ) |
171 |
91
|
rpcnd |
|- ( N e. NN -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) e. CC ) |
172 |
25 166 167
|
divcld |
|- ( N e. NN -> ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) e. CC ) |
173 |
103 172
|
mulcld |
|- ( N e. NN -> ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) e. CC ) |
174 |
91
|
rpne0d |
|- ( N e. NN -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) =/= 0 ) |
175 |
86
|
rpne0d |
|- ( N e. NN -> ( ! ` N ) =/= 0 ) |
176 |
25 166 29 167
|
divne0d |
|- ( N e. NN -> ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) =/= 0 ) |
177 |
103 172 175 176
|
mulne0d |
|- ( N e. NN -> ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) =/= 0 ) |
178 |
103 171 173 174 177
|
divdiv32d |
|- ( N e. NN -> ( ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) = ( ( ( ! ` N ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
179 |
103 103 172 175 176
|
divdiv1d |
|- ( N e. NN -> ( ( ( ! ` N ) / ( ! ` N ) ) / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) = ( ( ! ` N ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) ) |
180 |
179
|
eqcomd |
|- ( N e. NN -> ( ( ! ` N ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) = ( ( ( ! ` N ) / ( ! ` N ) ) / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) |
181 |
180
|
oveq1d |
|- ( N e. NN -> ( ( ( ! ` N ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) = ( ( ( ( ! ` N ) / ( ! ` N ) ) / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
182 |
103 175
|
dividd |
|- ( N e. NN -> ( ( ! ` N ) / ( ! ` N ) ) = 1 ) |
183 |
182
|
oveq1d |
|- ( N e. NN -> ( ( ( ! ` N ) / ( ! ` N ) ) / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) = ( 1 / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) |
184 |
183
|
oveq1d |
|- ( N e. NN -> ( ( ( ( ! ` N ) / ( ! ` N ) ) / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) = ( ( 1 / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
185 |
25 166 29 167
|
recdivd |
|- ( N e. NN -> ( 1 / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) = ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) ) |
186 |
185
|
oveq1d |
|- ( N e. NN -> ( ( 1 / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) = ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
187 |
166 25 29
|
divcld |
|- ( N e. NN -> ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) e. CC ) |
188 |
88
|
rpcnd |
|- ( N e. NN -> ( sqrt ` ( 2 x. N ) ) e. CC ) |
189 |
90
|
rpcnd |
|- ( N e. NN -> ( ( N / _e ) ^ N ) e. CC ) |
190 |
90
|
rpne0d |
|- ( N e. NN -> ( ( N / _e ) ^ N ) =/= 0 ) |
191 |
187 188 189 120 190
|
divdiv1d |
|- ( N e. NN -> ( ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( sqrt ` ( 2 x. N ) ) ) / ( ( N / _e ) ^ N ) ) = ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
192 |
166 25 188 29 120
|
divdiv32d |
|- ( N e. NN -> ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( sqrt ` ( 2 x. N ) ) ) = ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) / ( N + 1 ) ) ) |
193 |
155
|
rpcnd |
|- ( N e. NN -> ( sqrt ` ( 2 x. ( N + 1 ) ) ) e. CC ) |
194 |
158
|
rpcnd |
|- ( N e. NN -> ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) e. CC ) |
195 |
193 194 188 120
|
div23d |
|- ( N e. NN -> ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) = ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) |
196 |
34
|
rpred |
|- ( N e. NN -> 2 e. RR ) |
197 |
34
|
rpge0d |
|- ( N e. NN -> 0 <_ 2 ) |
198 |
24
|
nnred |
|- ( N e. NN -> ( N + 1 ) e. RR ) |
199 |
150
|
nn0ge0d |
|- ( N e. NN -> 0 <_ ( N + 1 ) ) |
200 |
196 197 198 199
|
sqrtmuld |
|- ( N e. NN -> ( sqrt ` ( 2 x. ( N + 1 ) ) ) = ( ( sqrt ` 2 ) x. ( sqrt ` ( N + 1 ) ) ) ) |
201 |
196 197 4 6
|
sqrtmuld |
|- ( N e. NN -> ( sqrt ` ( 2 x. N ) ) = ( ( sqrt ` 2 ) x. ( sqrt ` N ) ) ) |
202 |
200 201
|
oveq12d |
|- ( N e. NN -> ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) = ( ( ( sqrt ` 2 ) x. ( sqrt ` ( N + 1 ) ) ) / ( ( sqrt ` 2 ) x. ( sqrt ` N ) ) ) ) |
203 |
32
|
sqrtcld |
|- ( N e. NN -> ( sqrt ` 2 ) e. CC ) |
204 |
25
|
sqrtcld |
|- ( N e. NN -> ( sqrt ` ( N + 1 ) ) e. CC ) |
205 |
26
|
sqrtcld |
|- ( N e. NN -> ( sqrt ` N ) e. CC ) |
206 |
34
|
rpsqrtcld |
|- ( N e. NN -> ( sqrt ` 2 ) e. RR+ ) |
207 |
206
|
rpne0d |
|- ( N e. NN -> ( sqrt ` 2 ) =/= 0 ) |
208 |
8
|
rpsqrtcld |
|- ( N e. NN -> ( sqrt ` N ) e. RR+ ) |
209 |
208
|
rpne0d |
|- ( N e. NN -> ( sqrt ` N ) =/= 0 ) |
210 |
203 203 204 205 207 209
|
divmuldivd |
|- ( N e. NN -> ( ( ( sqrt ` 2 ) / ( sqrt ` 2 ) ) x. ( ( sqrt ` ( N + 1 ) ) / ( sqrt ` N ) ) ) = ( ( ( sqrt ` 2 ) x. ( sqrt ` ( N + 1 ) ) ) / ( ( sqrt ` 2 ) x. ( sqrt ` N ) ) ) ) |
211 |
203 207
|
dividd |
|- ( N e. NN -> ( ( sqrt ` 2 ) / ( sqrt ` 2 ) ) = 1 ) |
212 |
198 199 8
|
sqrtdivd |
|- ( N e. NN -> ( sqrt ` ( ( N + 1 ) / N ) ) = ( ( sqrt ` ( N + 1 ) ) / ( sqrt ` N ) ) ) |
213 |
212
|
eqcomd |
|- ( N e. NN -> ( ( sqrt ` ( N + 1 ) ) / ( sqrt ` N ) ) = ( sqrt ` ( ( N + 1 ) / N ) ) ) |
214 |
211 213
|
oveq12d |
|- ( N e. NN -> ( ( ( sqrt ` 2 ) / ( sqrt ` 2 ) ) x. ( ( sqrt ` ( N + 1 ) ) / ( sqrt ` N ) ) ) = ( 1 x. ( sqrt ` ( ( N + 1 ) / N ) ) ) ) |
215 |
202 210 214
|
3eqtr2d |
|- ( N e. NN -> ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) = ( 1 x. ( sqrt ` ( ( N + 1 ) / N ) ) ) ) |
216 |
215
|
oveq1d |
|- ( N e. NN -> ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) = ( ( 1 x. ( sqrt ` ( ( N + 1 ) / N ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) |
217 |
28
|
sqrtcld |
|- ( N e. NN -> ( sqrt ` ( ( N + 1 ) / N ) ) e. CC ) |
218 |
217
|
mulid2d |
|- ( N e. NN -> ( 1 x. ( sqrt ` ( ( N + 1 ) / N ) ) ) = ( sqrt ` ( ( N + 1 ) / N ) ) ) |
219 |
218
|
oveq1d |
|- ( N e. NN -> ( ( 1 x. ( sqrt ` ( ( N + 1 ) / N ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) |
220 |
195 216 219
|
3eqtrd |
|- ( N e. NN -> ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) |
221 |
220
|
oveq1d |
|- ( N e. NN -> ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) / ( N + 1 ) ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) ) |
222 |
192 221
|
eqtrd |
|- ( N e. NN -> ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( sqrt ` ( 2 x. N ) ) ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) ) |
223 |
222
|
oveq1d |
|- ( N e. NN -> ( ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( sqrt ` ( 2 x. N ) ) ) / ( ( N / _e ) ^ N ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) ) |
224 |
191 223
|
eqtr3d |
|- ( N e. NN -> ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) ) |
225 |
217 194
|
mulcld |
|- ( N e. NN -> ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) e. CC ) |
226 |
225 25 189 29 190
|
divdiv32d |
|- ( N e. NN -> ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( ( N / _e ) ^ N ) ) / ( N + 1 ) ) ) |
227 |
217 194 189 190
|
divassd |
|- ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( ( N / _e ) ^ N ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) ) ) |
228 |
15
|
rpcnd |
|- ( N e. NN -> _e e. CC ) |
229 |
15
|
rpne0d |
|- ( N e. NN -> _e =/= 0 ) |
230 |
25 228 229 150
|
expdivd |
|- ( N e. NN -> ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) = ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( _e ^ ( N + 1 ) ) ) ) |
231 |
26 228 229 5
|
expdivd |
|- ( N e. NN -> ( ( N / _e ) ^ N ) = ( ( N ^ N ) / ( _e ^ N ) ) ) |
232 |
230 231
|
oveq12d |
|- ( N e. NN -> ( ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) = ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( _e ^ ( N + 1 ) ) ) / ( ( N ^ N ) / ( _e ^ N ) ) ) ) |
233 |
232
|
oveq2d |
|- ( N e. NN -> ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( _e ^ ( N + 1 ) ) ) / ( ( N ^ N ) / ( _e ^ N ) ) ) ) ) |
234 |
25 150
|
expcld |
|- ( N e. NN -> ( ( N + 1 ) ^ ( N + 1 ) ) e. CC ) |
235 |
228 150
|
expcld |
|- ( N e. NN -> ( _e ^ ( N + 1 ) ) e. CC ) |
236 |
26 5
|
expcld |
|- ( N e. NN -> ( N ^ N ) e. CC ) |
237 |
228 5
|
expcld |
|- ( N e. NN -> ( _e ^ N ) e. CC ) |
238 |
228 229 157
|
expne0d |
|- ( N e. NN -> ( _e ^ ( N + 1 ) ) =/= 0 ) |
239 |
228 229 11
|
expne0d |
|- ( N e. NN -> ( _e ^ N ) =/= 0 ) |
240 |
26 27 11
|
expne0d |
|- ( N e. NN -> ( N ^ N ) =/= 0 ) |
241 |
234 235 236 237 238 239 240
|
divdivdivd |
|- ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( _e ^ ( N + 1 ) ) ) / ( ( N ^ N ) / ( _e ^ N ) ) ) = ( ( ( ( N + 1 ) ^ ( N + 1 ) ) x. ( _e ^ N ) ) / ( ( _e ^ ( N + 1 ) ) x. ( N ^ N ) ) ) ) |
242 |
234 237
|
mulcomd |
|- ( N e. NN -> ( ( ( N + 1 ) ^ ( N + 1 ) ) x. ( _e ^ N ) ) = ( ( _e ^ N ) x. ( ( N + 1 ) ^ ( N + 1 ) ) ) ) |
243 |
242
|
oveq1d |
|- ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) x. ( _e ^ N ) ) / ( ( _e ^ ( N + 1 ) ) x. ( N ^ N ) ) ) = ( ( ( _e ^ N ) x. ( ( N + 1 ) ^ ( N + 1 ) ) ) / ( ( _e ^ ( N + 1 ) ) x. ( N ^ N ) ) ) ) |
244 |
237 235 234 236 238 240
|
divmuldivd |
|- ( N e. NN -> ( ( ( _e ^ N ) / ( _e ^ ( N + 1 ) ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) = ( ( ( _e ^ N ) x. ( ( N + 1 ) ^ ( N + 1 ) ) ) / ( ( _e ^ ( N + 1 ) ) x. ( N ^ N ) ) ) ) |
245 |
228 5
|
expp1d |
|- ( N e. NN -> ( _e ^ ( N + 1 ) ) = ( ( _e ^ N ) x. _e ) ) |
246 |
245
|
oveq2d |
|- ( N e. NN -> ( ( _e ^ N ) / ( _e ^ ( N + 1 ) ) ) = ( ( _e ^ N ) / ( ( _e ^ N ) x. _e ) ) ) |
247 |
237 237 228 239 229
|
divdiv1d |
|- ( N e. NN -> ( ( ( _e ^ N ) / ( _e ^ N ) ) / _e ) = ( ( _e ^ N ) / ( ( _e ^ N ) x. _e ) ) ) |
248 |
237 239
|
dividd |
|- ( N e. NN -> ( ( _e ^ N ) / ( _e ^ N ) ) = 1 ) |
249 |
248
|
oveq1d |
|- ( N e. NN -> ( ( ( _e ^ N ) / ( _e ^ N ) ) / _e ) = ( 1 / _e ) ) |
250 |
246 247 249
|
3eqtr2d |
|- ( N e. NN -> ( ( _e ^ N ) / ( _e ^ ( N + 1 ) ) ) = ( 1 / _e ) ) |
251 |
250
|
oveq1d |
|- ( N e. NN -> ( ( ( _e ^ N ) / ( _e ^ ( N + 1 ) ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) = ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) |
252 |
244 251
|
eqtr3d |
|- ( N e. NN -> ( ( ( _e ^ N ) x. ( ( N + 1 ) ^ ( N + 1 ) ) ) / ( ( _e ^ ( N + 1 ) ) x. ( N ^ N ) ) ) = ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) |
253 |
241 243 252
|
3eqtrd |
|- ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( _e ^ ( N + 1 ) ) ) / ( ( N ^ N ) / ( _e ^ N ) ) ) = ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) |
254 |
253
|
oveq2d |
|- ( N e. NN -> ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( _e ^ ( N + 1 ) ) ) / ( ( N ^ N ) / ( _e ^ N ) ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) ) |
255 |
227 233 254
|
3eqtrd |
|- ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( ( N / _e ) ^ N ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) ) |
256 |
255
|
oveq1d |
|- ( N e. NN -> ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( ( N / _e ) ^ N ) ) / ( N + 1 ) ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) / ( N + 1 ) ) ) |
257 |
234 236 240
|
divcld |
|- ( N e. NN -> ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) e. CC ) |
258 |
38 228 257 229
|
div32d |
|- ( N e. NN -> ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) = ( 1 x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) ) ) |
259 |
257 228 229
|
divcld |
|- ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) e. CC ) |
260 |
259
|
mulid2d |
|- ( N e. NN -> ( 1 x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) ) = ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) ) |
261 |
258 260
|
eqtrd |
|- ( N e. NN -> ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) = ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) ) |
262 |
261
|
oveq2d |
|- ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) ) ) |
263 |
228 229
|
reccld |
|- ( N e. NN -> ( 1 / _e ) e. CC ) |
264 |
263 257
|
mulcld |
|- ( N e. NN -> ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) e. CC ) |
265 |
217 264 25 29
|
div23d |
|- ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) / ( N + 1 ) ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) ) |
266 |
217 25 29
|
divcld |
|- ( N e. NN -> ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) e. CC ) |
267 |
266 257 228 229
|
divassd |
|- ( N e. NN -> ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) ) ) |
268 |
262 265 267
|
3eqtr4d |
|- ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) / ( N + 1 ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) ) |
269 |
226 256 268
|
3eqtrd |
|- ( N e. NN -> ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) ) |
270 |
186 224 269
|
3eqtrd |
|- ( N e. NN -> ( ( 1 / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) ) |
271 |
181 184 270
|
3eqtrd |
|- ( N e. NN -> ( ( ( ! ` N ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) ) |
272 |
170 178 271
|
3eqtrd |
|- ( N e. NN -> ( ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) / ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) ) |
273 |
217 25 257 29
|
div32d |
|- ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / ( N + 1 ) ) ) ) |
274 |
25 5
|
expp1d |
|- ( N e. NN -> ( ( N + 1 ) ^ ( N + 1 ) ) = ( ( ( N + 1 ) ^ N ) x. ( N + 1 ) ) ) |
275 |
274
|
oveq1d |
|- ( N e. NN -> ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N + 1 ) ) = ( ( ( ( N + 1 ) ^ N ) x. ( N + 1 ) ) / ( N + 1 ) ) ) |
276 |
25 5
|
expcld |
|- ( N e. NN -> ( ( N + 1 ) ^ N ) e. CC ) |
277 |
276 25 29
|
divcan4d |
|- ( N e. NN -> ( ( ( ( N + 1 ) ^ N ) x. ( N + 1 ) ) / ( N + 1 ) ) = ( ( N + 1 ) ^ N ) ) |
278 |
275 277
|
eqtrd |
|- ( N e. NN -> ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N + 1 ) ) = ( ( N + 1 ) ^ N ) ) |
279 |
278
|
oveq1d |
|- ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N + 1 ) ) / ( N ^ N ) ) = ( ( ( N + 1 ) ^ N ) / ( N ^ N ) ) ) |
280 |
234 236 25 240 29
|
divdiv32d |
|- ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / ( N + 1 ) ) = ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N + 1 ) ) / ( N ^ N ) ) ) |
281 |
25 26 27 5
|
expdivd |
|- ( N e. NN -> ( ( ( N + 1 ) / N ) ^ N ) = ( ( ( N + 1 ) ^ N ) / ( N ^ N ) ) ) |
282 |
279 280 281
|
3eqtr4d |
|- ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / ( N + 1 ) ) = ( ( ( N + 1 ) / N ) ^ N ) ) |
283 |
282
|
oveq2d |
|- ( N e. NN -> ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / ( N + 1 ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) |
284 |
273 283
|
eqtrd |
|- ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) |
285 |
284
|
oveq1d |
|- ( N e. NN -> ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) / _e ) ) |
286 |
162 272 285
|
3eqtrd |
|- ( N e. NN -> ( ( A ` N ) / ( A ` ( N + 1 ) ) ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) / _e ) ) |
287 |
286
|
fveq2d |
|- ( N e. NN -> ( log ` ( ( A ` N ) / ( A ` ( N + 1 ) ) ) ) = ( log ` ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) / _e ) ) ) |
288 |
82 83 287
|
3eqtr2d |
|- ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) = ( log ` ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) / _e ) ) ) |
289 |
38 46
|
addcld |
|- ( N e. NN -> ( 1 + ( 2 x. N ) ) e. CC ) |
290 |
289
|
halfcld |
|- ( N e. NN -> ( ( 1 + ( 2 x. N ) ) / 2 ) e. CC ) |
291 |
290 31
|
mulcld |
|- ( N e. NN -> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) e. CC ) |
292 |
291 38
|
subcld |
|- ( N e. NN -> ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) |
293 |
3
|
a1i |
|- ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) -> J = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) ) |
294 |
|
simpr |
|- ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> n = N ) |
295 |
294
|
oveq2d |
|- ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( 2 x. n ) = ( 2 x. N ) ) |
296 |
295
|
oveq2d |
|- ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( 1 + ( 2 x. n ) ) = ( 1 + ( 2 x. N ) ) ) |
297 |
296
|
oveq1d |
|- ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( ( 1 + ( 2 x. n ) ) / 2 ) = ( ( 1 + ( 2 x. N ) ) / 2 ) ) |
298 |
294
|
oveq1d |
|- ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( n + 1 ) = ( N + 1 ) ) |
299 |
298 294
|
oveq12d |
|- ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( ( n + 1 ) / n ) = ( ( N + 1 ) / N ) ) |
300 |
299
|
fveq2d |
|- ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( log ` ( ( n + 1 ) / n ) ) = ( log ` ( ( N + 1 ) / N ) ) ) |
301 |
297 300
|
oveq12d |
|- ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) |
302 |
301
|
oveq1d |
|- ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
303 |
|
simpl |
|- ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) -> N e. NN ) |
304 |
|
simpr |
|- ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) -> ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) |
305 |
293 302 303 304
|
fvmptd |
|- ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) -> ( J ` N ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
306 |
292 305
|
mpdan |
|- ( N e. NN -> ( J ` N ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
307 |
55 288 306
|
3eqtr4d |
|- ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) = ( J ` N ) ) |