| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stirlinglem7.1 |
|- J = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) |
| 2 |
|
stirlinglem7.2 |
|- K = ( k e. NN |-> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) ) |
| 3 |
|
stirlinglem7.3 |
|- H = ( k e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 4 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 5 |
|
1zzd |
|- ( N e. NN -> 1 e. ZZ ) |
| 6 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 7 |
6
|
a1i |
|- ( N e. NN -> 1 = ( 0 + 1 ) ) |
| 8 |
7
|
seqeq1d |
|- ( N e. NN -> seq 1 ( + , H ) = seq ( 0 + 1 ) ( + , H ) ) |
| 9 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 10 |
|
0nn0 |
|- 0 e. NN0 |
| 11 |
10
|
a1i |
|- ( N e. NN -> 0 e. NN0 ) |
| 12 |
|
oveq2 |
|- ( k = j -> ( 2 x. k ) = ( 2 x. j ) ) |
| 13 |
12
|
oveq1d |
|- ( k = j -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. j ) + 1 ) ) |
| 14 |
13
|
oveq2d |
|- ( k = j -> ( 1 / ( ( 2 x. k ) + 1 ) ) = ( 1 / ( ( 2 x. j ) + 1 ) ) ) |
| 15 |
13
|
oveq2d |
|- ( k = j -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) = ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. j ) + 1 ) ) ) |
| 16 |
14 15
|
oveq12d |
|- ( k = j -> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) = ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. j ) + 1 ) ) ) ) |
| 17 |
16
|
oveq2d |
|- ( k = j -> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) = ( 2 x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. j ) + 1 ) ) ) ) ) |
| 18 |
|
simpr |
|- ( ( N e. NN /\ j e. NN0 ) -> j e. NN0 ) |
| 19 |
|
2cnd |
|- ( ( N e. NN /\ j e. NN0 ) -> 2 e. CC ) |
| 20 |
|
2cnd |
|- ( j e. NN0 -> 2 e. CC ) |
| 21 |
|
nn0cn |
|- ( j e. NN0 -> j e. CC ) |
| 22 |
20 21
|
mulcld |
|- ( j e. NN0 -> ( 2 x. j ) e. CC ) |
| 23 |
|
1cnd |
|- ( j e. NN0 -> 1 e. CC ) |
| 24 |
22 23
|
addcld |
|- ( j e. NN0 -> ( ( 2 x. j ) + 1 ) e. CC ) |
| 25 |
24
|
adantl |
|- ( ( N e. NN /\ j e. NN0 ) -> ( ( 2 x. j ) + 1 ) e. CC ) |
| 26 |
|
0red |
|- ( j e. NN0 -> 0 e. RR ) |
| 27 |
|
2re |
|- 2 e. RR |
| 28 |
27
|
a1i |
|- ( j e. NN0 -> 2 e. RR ) |
| 29 |
|
nn0re |
|- ( j e. NN0 -> j e. RR ) |
| 30 |
28 29
|
remulcld |
|- ( j e. NN0 -> ( 2 x. j ) e. RR ) |
| 31 |
|
1red |
|- ( j e. NN0 -> 1 e. RR ) |
| 32 |
|
0le2 |
|- 0 <_ 2 |
| 33 |
32
|
a1i |
|- ( j e. NN0 -> 0 <_ 2 ) |
| 34 |
|
nn0ge0 |
|- ( j e. NN0 -> 0 <_ j ) |
| 35 |
28 29 33 34
|
mulge0d |
|- ( j e. NN0 -> 0 <_ ( 2 x. j ) ) |
| 36 |
|
0lt1 |
|- 0 < 1 |
| 37 |
36
|
a1i |
|- ( j e. NN0 -> 0 < 1 ) |
| 38 |
30 31 35 37
|
addgegt0d |
|- ( j e. NN0 -> 0 < ( ( 2 x. j ) + 1 ) ) |
| 39 |
26 38
|
ltned |
|- ( j e. NN0 -> 0 =/= ( ( 2 x. j ) + 1 ) ) |
| 40 |
39
|
adantl |
|- ( ( N e. NN /\ j e. NN0 ) -> 0 =/= ( ( 2 x. j ) + 1 ) ) |
| 41 |
40
|
necomd |
|- ( ( N e. NN /\ j e. NN0 ) -> ( ( 2 x. j ) + 1 ) =/= 0 ) |
| 42 |
25 41
|
reccld |
|- ( ( N e. NN /\ j e. NN0 ) -> ( 1 / ( ( 2 x. j ) + 1 ) ) e. CC ) |
| 43 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 44 |
43
|
adantr |
|- ( ( N e. NN /\ j e. NN0 ) -> N e. CC ) |
| 45 |
19 44
|
mulcld |
|- ( ( N e. NN /\ j e. NN0 ) -> ( 2 x. N ) e. CC ) |
| 46 |
|
1cnd |
|- ( ( N e. NN /\ j e. NN0 ) -> 1 e. CC ) |
| 47 |
45 46
|
addcld |
|- ( ( N e. NN /\ j e. NN0 ) -> ( ( 2 x. N ) + 1 ) e. CC ) |
| 48 |
27
|
a1i |
|- ( N e. NN -> 2 e. RR ) |
| 49 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 50 |
48 49
|
remulcld |
|- ( N e. NN -> ( 2 x. N ) e. RR ) |
| 51 |
|
1red |
|- ( N e. NN -> 1 e. RR ) |
| 52 |
32
|
a1i |
|- ( N e. NN -> 0 <_ 2 ) |
| 53 |
|
0red |
|- ( N e. NN -> 0 e. RR ) |
| 54 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
| 55 |
53 49 54
|
ltled |
|- ( N e. NN -> 0 <_ N ) |
| 56 |
48 49 52 55
|
mulge0d |
|- ( N e. NN -> 0 <_ ( 2 x. N ) ) |
| 57 |
36
|
a1i |
|- ( N e. NN -> 0 < 1 ) |
| 58 |
50 51 56 57
|
addgegt0d |
|- ( N e. NN -> 0 < ( ( 2 x. N ) + 1 ) ) |
| 59 |
58
|
gt0ne0d |
|- ( N e. NN -> ( ( 2 x. N ) + 1 ) =/= 0 ) |
| 60 |
59
|
adantr |
|- ( ( N e. NN /\ j e. NN0 ) -> ( ( 2 x. N ) + 1 ) =/= 0 ) |
| 61 |
47 60
|
reccld |
|- ( ( N e. NN /\ j e. NN0 ) -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. CC ) |
| 62 |
|
2nn0 |
|- 2 e. NN0 |
| 63 |
62
|
a1i |
|- ( ( N e. NN /\ j e. NN0 ) -> 2 e. NN0 ) |
| 64 |
63 18
|
nn0mulcld |
|- ( ( N e. NN /\ j e. NN0 ) -> ( 2 x. j ) e. NN0 ) |
| 65 |
|
1nn0 |
|- 1 e. NN0 |
| 66 |
65
|
a1i |
|- ( ( N e. NN /\ j e. NN0 ) -> 1 e. NN0 ) |
| 67 |
64 66
|
nn0addcld |
|- ( ( N e. NN /\ j e. NN0 ) -> ( ( 2 x. j ) + 1 ) e. NN0 ) |
| 68 |
61 67
|
expcld |
|- ( ( N e. NN /\ j e. NN0 ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. j ) + 1 ) ) e. CC ) |
| 69 |
42 68
|
mulcld |
|- ( ( N e. NN /\ j e. NN0 ) -> ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. j ) + 1 ) ) ) e. CC ) |
| 70 |
19 69
|
mulcld |
|- ( ( N e. NN /\ j e. NN0 ) -> ( 2 x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. j ) + 1 ) ) ) ) e. CC ) |
| 71 |
3 17 18 70
|
fvmptd3 |
|- ( ( N e. NN /\ j e. NN0 ) -> ( H ` j ) = ( 2 x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. j ) + 1 ) ) ) ) ) |
| 72 |
71 70
|
eqeltrd |
|- ( ( N e. NN /\ j e. NN0 ) -> ( H ` j ) e. CC ) |
| 73 |
3
|
stirlinglem6 |
|- ( N e. NN -> seq 0 ( + , H ) ~~> ( log ` ( ( N + 1 ) / N ) ) ) |
| 74 |
9 11 72 73
|
clim2ser |
|- ( N e. NN -> seq ( 0 + 1 ) ( + , H ) ~~> ( ( log ` ( ( N + 1 ) / N ) ) - ( seq 0 ( + , H ) ` 0 ) ) ) |
| 75 |
8 74
|
eqbrtrd |
|- ( N e. NN -> seq 1 ( + , H ) ~~> ( ( log ` ( ( N + 1 ) / N ) ) - ( seq 0 ( + , H ) ` 0 ) ) ) |
| 76 |
|
0z |
|- 0 e. ZZ |
| 77 |
|
seq1 |
|- ( 0 e. ZZ -> ( seq 0 ( + , H ) ` 0 ) = ( H ` 0 ) ) |
| 78 |
76 77
|
mp1i |
|- ( N e. NN -> ( seq 0 ( + , H ) ` 0 ) = ( H ` 0 ) ) |
| 79 |
3
|
a1i |
|- ( N e. NN -> H = ( k e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) ) ) |
| 80 |
|
simpr |
|- ( ( N e. NN /\ k = 0 ) -> k = 0 ) |
| 81 |
80
|
oveq2d |
|- ( ( N e. NN /\ k = 0 ) -> ( 2 x. k ) = ( 2 x. 0 ) ) |
| 82 |
81
|
oveq1d |
|- ( ( N e. NN /\ k = 0 ) -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. 0 ) + 1 ) ) |
| 83 |
82
|
oveq2d |
|- ( ( N e. NN /\ k = 0 ) -> ( 1 / ( ( 2 x. k ) + 1 ) ) = ( 1 / ( ( 2 x. 0 ) + 1 ) ) ) |
| 84 |
82
|
oveq2d |
|- ( ( N e. NN /\ k = 0 ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) = ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) |
| 85 |
83 84
|
oveq12d |
|- ( ( N e. NN /\ k = 0 ) -> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) = ( ( 1 / ( ( 2 x. 0 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) ) |
| 86 |
85
|
oveq2d |
|- ( ( N e. NN /\ k = 0 ) -> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) = ( 2 x. ( ( 1 / ( ( 2 x. 0 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) ) ) |
| 87 |
|
2cnd |
|- ( N e. NN -> 2 e. CC ) |
| 88 |
|
0cnd |
|- ( N e. NN -> 0 e. CC ) |
| 89 |
87 88
|
mulcld |
|- ( N e. NN -> ( 2 x. 0 ) e. CC ) |
| 90 |
|
1cnd |
|- ( N e. NN -> 1 e. CC ) |
| 91 |
89 90
|
addcld |
|- ( N e. NN -> ( ( 2 x. 0 ) + 1 ) e. CC ) |
| 92 |
87
|
mul01d |
|- ( N e. NN -> ( 2 x. 0 ) = 0 ) |
| 93 |
92
|
eqcomd |
|- ( N e. NN -> 0 = ( 2 x. 0 ) ) |
| 94 |
93
|
oveq1d |
|- ( N e. NN -> ( 0 + 1 ) = ( ( 2 x. 0 ) + 1 ) ) |
| 95 |
7 94
|
eqtrd |
|- ( N e. NN -> 1 = ( ( 2 x. 0 ) + 1 ) ) |
| 96 |
57 95
|
breqtrd |
|- ( N e. NN -> 0 < ( ( 2 x. 0 ) + 1 ) ) |
| 97 |
96
|
gt0ne0d |
|- ( N e. NN -> ( ( 2 x. 0 ) + 1 ) =/= 0 ) |
| 98 |
91 97
|
reccld |
|- ( N e. NN -> ( 1 / ( ( 2 x. 0 ) + 1 ) ) e. CC ) |
| 99 |
87 43
|
mulcld |
|- ( N e. NN -> ( 2 x. N ) e. CC ) |
| 100 |
99 90
|
addcld |
|- ( N e. NN -> ( ( 2 x. N ) + 1 ) e. CC ) |
| 101 |
100 59
|
reccld |
|- ( N e. NN -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. CC ) |
| 102 |
95 65
|
eqeltrrdi |
|- ( N e. NN -> ( ( 2 x. 0 ) + 1 ) e. NN0 ) |
| 103 |
101 102
|
expcld |
|- ( N e. NN -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) e. CC ) |
| 104 |
98 103
|
mulcld |
|- ( N e. NN -> ( ( 1 / ( ( 2 x. 0 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) e. CC ) |
| 105 |
87 104
|
mulcld |
|- ( N e. NN -> ( 2 x. ( ( 1 / ( ( 2 x. 0 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) ) e. CC ) |
| 106 |
79 86 11 105
|
fvmptd |
|- ( N e. NN -> ( H ` 0 ) = ( 2 x. ( ( 1 / ( ( 2 x. 0 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) ) ) |
| 107 |
92
|
oveq1d |
|- ( N e. NN -> ( ( 2 x. 0 ) + 1 ) = ( 0 + 1 ) ) |
| 108 |
107 6
|
eqtr4di |
|- ( N e. NN -> ( ( 2 x. 0 ) + 1 ) = 1 ) |
| 109 |
108
|
oveq2d |
|- ( N e. NN -> ( 1 / ( ( 2 x. 0 ) + 1 ) ) = ( 1 / 1 ) ) |
| 110 |
90
|
div1d |
|- ( N e. NN -> ( 1 / 1 ) = 1 ) |
| 111 |
109 110
|
eqtrd |
|- ( N e. NN -> ( 1 / ( ( 2 x. 0 ) + 1 ) ) = 1 ) |
| 112 |
108
|
oveq2d |
|- ( N e. NN -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) = ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ 1 ) ) |
| 113 |
101
|
exp1d |
|- ( N e. NN -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ 1 ) = ( 1 / ( ( 2 x. N ) + 1 ) ) ) |
| 114 |
112 113
|
eqtrd |
|- ( N e. NN -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) = ( 1 / ( ( 2 x. N ) + 1 ) ) ) |
| 115 |
111 114
|
oveq12d |
|- ( N e. NN -> ( ( 1 / ( ( 2 x. 0 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) = ( 1 x. ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) |
| 116 |
101
|
mullidd |
|- ( N e. NN -> ( 1 x. ( 1 / ( ( 2 x. N ) + 1 ) ) ) = ( 1 / ( ( 2 x. N ) + 1 ) ) ) |
| 117 |
115 116
|
eqtrd |
|- ( N e. NN -> ( ( 1 / ( ( 2 x. 0 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) = ( 1 / ( ( 2 x. N ) + 1 ) ) ) |
| 118 |
117
|
oveq2d |
|- ( N e. NN -> ( 2 x. ( ( 1 / ( ( 2 x. 0 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) ) = ( 2 x. ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) |
| 119 |
87 90 100 59
|
divassd |
|- ( N e. NN -> ( ( 2 x. 1 ) / ( ( 2 x. N ) + 1 ) ) = ( 2 x. ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) |
| 120 |
87
|
mulridd |
|- ( N e. NN -> ( 2 x. 1 ) = 2 ) |
| 121 |
120
|
oveq1d |
|- ( N e. NN -> ( ( 2 x. 1 ) / ( ( 2 x. N ) + 1 ) ) = ( 2 / ( ( 2 x. N ) + 1 ) ) ) |
| 122 |
118 119 121
|
3eqtr2d |
|- ( N e. NN -> ( 2 x. ( ( 1 / ( ( 2 x. 0 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) ) = ( 2 / ( ( 2 x. N ) + 1 ) ) ) |
| 123 |
78 106 122
|
3eqtrd |
|- ( N e. NN -> ( seq 0 ( + , H ) ` 0 ) = ( 2 / ( ( 2 x. N ) + 1 ) ) ) |
| 124 |
123
|
oveq2d |
|- ( N e. NN -> ( ( log ` ( ( N + 1 ) / N ) ) - ( seq 0 ( + , H ) ` 0 ) ) = ( ( log ` ( ( N + 1 ) / N ) ) - ( 2 / ( ( 2 x. N ) + 1 ) ) ) ) |
| 125 |
75 124
|
breqtrd |
|- ( N e. NN -> seq 1 ( + , H ) ~~> ( ( log ` ( ( N + 1 ) / N ) ) - ( 2 / ( ( 2 x. N ) + 1 ) ) ) ) |
| 126 |
90 99
|
addcld |
|- ( N e. NN -> ( 1 + ( 2 x. N ) ) e. CC ) |
| 127 |
126
|
halfcld |
|- ( N e. NN -> ( ( 1 + ( 2 x. N ) ) / 2 ) e. CC ) |
| 128 |
|
seqex |
|- seq 1 ( + , K ) e. _V |
| 129 |
128
|
a1i |
|- ( N e. NN -> seq 1 ( + , K ) e. _V ) |
| 130 |
|
elnnuz |
|- ( j e. NN <-> j e. ( ZZ>= ` 1 ) ) |
| 131 |
130
|
biimpi |
|- ( j e. NN -> j e. ( ZZ>= ` 1 ) ) |
| 132 |
131
|
adantl |
|- ( ( N e. NN /\ j e. NN ) -> j e. ( ZZ>= ` 1 ) ) |
| 133 |
|
oveq2 |
|- ( k = n -> ( 2 x. k ) = ( 2 x. n ) ) |
| 134 |
133
|
oveq1d |
|- ( k = n -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. n ) + 1 ) ) |
| 135 |
134
|
oveq2d |
|- ( k = n -> ( 1 / ( ( 2 x. k ) + 1 ) ) = ( 1 / ( ( 2 x. n ) + 1 ) ) ) |
| 136 |
134
|
oveq2d |
|- ( k = n -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) = ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) |
| 137 |
135 136
|
oveq12d |
|- ( k = n -> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) |
| 138 |
137
|
oveq2d |
|- ( k = n -> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) = ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 139 |
|
elfzuz |
|- ( n e. ( 1 ... j ) -> n e. ( ZZ>= ` 1 ) ) |
| 140 |
|
elnnuz |
|- ( n e. NN <-> n e. ( ZZ>= ` 1 ) ) |
| 141 |
140
|
biimpri |
|- ( n e. ( ZZ>= ` 1 ) -> n e. NN ) |
| 142 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
| 143 |
139 141 142
|
3syl |
|- ( n e. ( 1 ... j ) -> n e. NN0 ) |
| 144 |
143
|
adantl |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> n e. NN0 ) |
| 145 |
|
2cnd |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> 2 e. CC ) |
| 146 |
144
|
nn0cnd |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> n e. CC ) |
| 147 |
145 146
|
mulcld |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 x. n ) e. CC ) |
| 148 |
|
1cnd |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> 1 e. CC ) |
| 149 |
147 148
|
addcld |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 2 x. n ) + 1 ) e. CC ) |
| 150 |
|
elfznn |
|- ( n e. ( 1 ... j ) -> n e. NN ) |
| 151 |
|
0red |
|- ( n e. NN -> 0 e. RR ) |
| 152 |
|
1red |
|- ( n e. NN -> 1 e. RR ) |
| 153 |
27
|
a1i |
|- ( n e. NN -> 2 e. RR ) |
| 154 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
| 155 |
153 154
|
remulcld |
|- ( n e. NN -> ( 2 x. n ) e. RR ) |
| 156 |
155 152
|
readdcld |
|- ( n e. NN -> ( ( 2 x. n ) + 1 ) e. RR ) |
| 157 |
36
|
a1i |
|- ( n e. NN -> 0 < 1 ) |
| 158 |
|
2rp |
|- 2 e. RR+ |
| 159 |
158
|
a1i |
|- ( n e. NN -> 2 e. RR+ ) |
| 160 |
|
nnrp |
|- ( n e. NN -> n e. RR+ ) |
| 161 |
159 160
|
rpmulcld |
|- ( n e. NN -> ( 2 x. n ) e. RR+ ) |
| 162 |
152 161
|
ltaddrp2d |
|- ( n e. NN -> 1 < ( ( 2 x. n ) + 1 ) ) |
| 163 |
151 152 156 157 162
|
lttrd |
|- ( n e. NN -> 0 < ( ( 2 x. n ) + 1 ) ) |
| 164 |
163
|
gt0ne0d |
|- ( n e. NN -> ( ( 2 x. n ) + 1 ) =/= 0 ) |
| 165 |
150 164
|
syl |
|- ( n e. ( 1 ... j ) -> ( ( 2 x. n ) + 1 ) =/= 0 ) |
| 166 |
165
|
adantl |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 2 x. n ) + 1 ) =/= 0 ) |
| 167 |
149 166
|
reccld |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) e. CC ) |
| 168 |
101
|
ad2antrr |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. CC ) |
| 169 |
62
|
a1i |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> 2 e. NN0 ) |
| 170 |
169 144
|
nn0mulcld |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 x. n ) e. NN0 ) |
| 171 |
65
|
a1i |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> 1 e. NN0 ) |
| 172 |
170 171
|
nn0addcld |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 2 x. n ) + 1 ) e. NN0 ) |
| 173 |
168 172
|
expcld |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) e. CC ) |
| 174 |
167 173
|
mulcld |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) e. CC ) |
| 175 |
145 174
|
mulcld |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) e. CC ) |
| 176 |
3 138 144 175
|
fvmptd3 |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( H ` n ) = ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 177 |
176 175
|
eqeltrd |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( H ` n ) e. CC ) |
| 178 |
|
addcl |
|- ( ( n e. CC /\ i e. CC ) -> ( n + i ) e. CC ) |
| 179 |
178
|
adantl |
|- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> ( n + i ) e. CC ) |
| 180 |
132 177 179
|
seqcl |
|- ( ( N e. NN /\ j e. NN ) -> ( seq 1 ( + , H ) ` j ) e. CC ) |
| 181 |
|
1cnd |
|- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> 1 e. CC ) |
| 182 |
|
2cnd |
|- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> 2 e. CC ) |
| 183 |
43
|
ad2antrr |
|- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> N e. CC ) |
| 184 |
182 183
|
mulcld |
|- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> ( 2 x. N ) e. CC ) |
| 185 |
181 184
|
addcld |
|- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> ( 1 + ( 2 x. N ) ) e. CC ) |
| 186 |
185
|
halfcld |
|- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> ( ( 1 + ( 2 x. N ) ) / 2 ) e. CC ) |
| 187 |
|
simprl |
|- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> n e. CC ) |
| 188 |
|
simprr |
|- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> i e. CC ) |
| 189 |
186 187 188
|
adddid |
|- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( n + i ) ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. n ) + ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. i ) ) ) |
| 190 |
133
|
oveq2d |
|- ( k = n -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) = ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) |
| 191 |
135 190
|
oveq12d |
|- ( k = n -> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) ) |
| 192 |
150
|
adantl |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> n e. NN ) |
| 193 |
168 170
|
expcld |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) e. CC ) |
| 194 |
167 193
|
mulcld |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) e. CC ) |
| 195 |
2 191 192 194
|
fvmptd3 |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( K ` n ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) ) |
| 196 |
126
|
ad2antrr |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 1 + ( 2 x. N ) ) e. CC ) |
| 197 |
|
2ne0 |
|- 2 =/= 0 |
| 198 |
197
|
a1i |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> 2 =/= 0 ) |
| 199 |
196 145 175 198
|
div32d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) ) = ( ( 1 + ( 2 x. N ) ) x. ( ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) / 2 ) ) ) |
| 200 |
174 145 198
|
divcan3d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) / 2 ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) |
| 201 |
200
|
oveq2d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 + ( 2 x. N ) ) x. ( ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) / 2 ) ) = ( ( 1 + ( 2 x. N ) ) x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 202 |
196 167 173
|
mul12d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 + ( 2 x. N ) ) x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 + ( 2 x. N ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 203 |
100
|
ad2antrr |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 2 x. N ) + 1 ) e. CC ) |
| 204 |
59
|
ad2antrr |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 2 x. N ) + 1 ) =/= 0 ) |
| 205 |
172
|
nn0zd |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 2 x. n ) + 1 ) e. ZZ ) |
| 206 |
203 204 205
|
exprecd |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) = ( 1 / ( ( ( 2 x. N ) + 1 ) ^ ( ( 2 x. n ) + 1 ) ) ) ) |
| 207 |
206
|
oveq2d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 + ( 2 x. N ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) = ( ( 1 + ( 2 x. N ) ) x. ( 1 / ( ( ( 2 x. N ) + 1 ) ^ ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 208 |
203 172
|
expcld |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 2 x. N ) + 1 ) ^ ( ( 2 x. n ) + 1 ) ) e. CC ) |
| 209 |
203 204 205
|
expne0d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 2 x. N ) + 1 ) ^ ( ( 2 x. n ) + 1 ) ) =/= 0 ) |
| 210 |
196 208 209
|
divrecd |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 + ( 2 x. N ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( ( 2 x. n ) + 1 ) ) ) = ( ( 1 + ( 2 x. N ) ) x. ( 1 / ( ( ( 2 x. N ) + 1 ) ^ ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 211 |
43
|
ad2antrr |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> N e. CC ) |
| 212 |
145 211
|
mulcld |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 x. N ) e. CC ) |
| 213 |
148 212
|
addcomd |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 1 + ( 2 x. N ) ) = ( ( 2 x. N ) + 1 ) ) |
| 214 |
203 170
|
expcld |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) e. CC ) |
| 215 |
214 203
|
mulcomd |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) x. ( ( 2 x. N ) + 1 ) ) = ( ( ( 2 x. N ) + 1 ) x. ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) |
| 216 |
213 215
|
oveq12d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 + ( 2 x. N ) ) / ( ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) x. ( ( 2 x. N ) + 1 ) ) ) = ( ( ( 2 x. N ) + 1 ) / ( ( ( 2 x. N ) + 1 ) x. ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) ) |
| 217 |
203 170
|
expp1d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 2 x. N ) + 1 ) ^ ( ( 2 x. n ) + 1 ) ) = ( ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) x. ( ( 2 x. N ) + 1 ) ) ) |
| 218 |
217
|
oveq2d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 + ( 2 x. N ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( ( 2 x. n ) + 1 ) ) ) = ( ( 1 + ( 2 x. N ) ) / ( ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) x. ( ( 2 x. N ) + 1 ) ) ) ) |
| 219 |
|
2z |
|- 2 e. ZZ |
| 220 |
219
|
a1i |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> 2 e. ZZ ) |
| 221 |
144
|
nn0zd |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> n e. ZZ ) |
| 222 |
220 221
|
zmulcld |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 x. n ) e. ZZ ) |
| 223 |
203 204 222
|
expne0d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) =/= 0 ) |
| 224 |
203 203 214 204 223
|
divdiv1d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) = ( ( ( 2 x. N ) + 1 ) / ( ( ( 2 x. N ) + 1 ) x. ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) ) |
| 225 |
216 218 224
|
3eqtr4d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 + ( 2 x. N ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( ( 2 x. n ) + 1 ) ) ) = ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) |
| 226 |
207 210 225
|
3eqtr2d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 + ( 2 x. N ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) = ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) |
| 227 |
226
|
oveq2d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 + ( 2 x. N ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) ) |
| 228 |
203 204
|
dividd |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) = 1 ) |
| 229 |
|
1exp |
|- ( ( 2 x. n ) e. ZZ -> ( 1 ^ ( 2 x. n ) ) = 1 ) |
| 230 |
222 229
|
syl |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 1 ^ ( 2 x. n ) ) = 1 ) |
| 231 |
228 230
|
eqtr4d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) = ( 1 ^ ( 2 x. n ) ) ) |
| 232 |
231
|
oveq1d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) = ( ( 1 ^ ( 2 x. n ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) |
| 233 |
148 203 204 170
|
expdivd |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) = ( ( 1 ^ ( 2 x. n ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) |
| 234 |
232 233
|
eqtr4d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) = ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) |
| 235 |
234
|
oveq2d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) ) |
| 236 |
202 227 235
|
3eqtrd |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 + ( 2 x. N ) ) x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) ) |
| 237 |
199 201 236
|
3eqtrd |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) ) |
| 238 |
176
|
eqcomd |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) = ( H ` n ) ) |
| 239 |
238
|
oveq2d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( H ` n ) ) ) |
| 240 |
195 237 239
|
3eqtr2d |
|- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( K ` n ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( H ` n ) ) ) |
| 241 |
179 189 132 177 240
|
seqdistr |
|- ( ( N e. NN /\ j e. NN ) -> ( seq 1 ( + , K ) ` j ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( seq 1 ( + , H ) ` j ) ) ) |
| 242 |
4 5 125 127 129 180 241
|
climmulc2 |
|- ( N e. NN -> seq 1 ( + , K ) ~~> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( ( log ` ( ( N + 1 ) / N ) ) - ( 2 / ( ( 2 x. N ) + 1 ) ) ) ) ) |
| 243 |
90 99
|
addcomd |
|- ( N e. NN -> ( 1 + ( 2 x. N ) ) = ( ( 2 x. N ) + 1 ) ) |
| 244 |
243
|
oveq1d |
|- ( N e. NN -> ( ( 1 + ( 2 x. N ) ) / 2 ) = ( ( ( 2 x. N ) + 1 ) / 2 ) ) |
| 245 |
244
|
oveq1d |
|- ( N e. NN -> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( ( log ` ( ( N + 1 ) / N ) ) - ( 2 / ( ( 2 x. N ) + 1 ) ) ) ) = ( ( ( ( 2 x. N ) + 1 ) / 2 ) x. ( ( log ` ( ( N + 1 ) / N ) ) - ( 2 / ( ( 2 x. N ) + 1 ) ) ) ) ) |
| 246 |
244 127
|
eqeltrrd |
|- ( N e. NN -> ( ( ( 2 x. N ) + 1 ) / 2 ) e. CC ) |
| 247 |
43 90
|
addcld |
|- ( N e. NN -> ( N + 1 ) e. CC ) |
| 248 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 249 |
247 43 248
|
divcld |
|- ( N e. NN -> ( ( N + 1 ) / N ) e. CC ) |
| 250 |
49 51
|
readdcld |
|- ( N e. NN -> ( N + 1 ) e. RR ) |
| 251 |
49
|
ltp1d |
|- ( N e. NN -> N < ( N + 1 ) ) |
| 252 |
53 49 250 54 251
|
lttrd |
|- ( N e. NN -> 0 < ( N + 1 ) ) |
| 253 |
252
|
gt0ne0d |
|- ( N e. NN -> ( N + 1 ) =/= 0 ) |
| 254 |
247 43 253 248
|
divne0d |
|- ( N e. NN -> ( ( N + 1 ) / N ) =/= 0 ) |
| 255 |
249 254
|
logcld |
|- ( N e. NN -> ( log ` ( ( N + 1 ) / N ) ) e. CC ) |
| 256 |
87 100 59
|
divcld |
|- ( N e. NN -> ( 2 / ( ( 2 x. N ) + 1 ) ) e. CC ) |
| 257 |
246 255 256
|
subdid |
|- ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) / 2 ) x. ( ( log ` ( ( N + 1 ) / N ) ) - ( 2 / ( ( 2 x. N ) + 1 ) ) ) ) = ( ( ( ( ( 2 x. N ) + 1 ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - ( ( ( ( 2 x. N ) + 1 ) / 2 ) x. ( 2 / ( ( 2 x. N ) + 1 ) ) ) ) ) |
| 258 |
99 90
|
addcomd |
|- ( N e. NN -> ( ( 2 x. N ) + 1 ) = ( 1 + ( 2 x. N ) ) ) |
| 259 |
258
|
oveq1d |
|- ( N e. NN -> ( ( ( 2 x. N ) + 1 ) / 2 ) = ( ( 1 + ( 2 x. N ) ) / 2 ) ) |
| 260 |
259
|
oveq1d |
|- ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) |
| 261 |
197
|
a1i |
|- ( N e. NN -> 2 =/= 0 ) |
| 262 |
100 87 59 261
|
divcan6d |
|- ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) / 2 ) x. ( 2 / ( ( 2 x. N ) + 1 ) ) ) = 1 ) |
| 263 |
260 262
|
oveq12d |
|- ( N e. NN -> ( ( ( ( ( 2 x. N ) + 1 ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - ( ( ( ( 2 x. N ) + 1 ) / 2 ) x. ( 2 / ( ( 2 x. N ) + 1 ) ) ) ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
| 264 |
245 257 263
|
3eqtrd |
|- ( N e. NN -> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( ( log ` ( ( N + 1 ) / N ) ) - ( 2 / ( ( 2 x. N ) + 1 ) ) ) ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
| 265 |
242 264
|
breqtrd |
|- ( N e. NN -> seq 1 ( + , K ) ~~> ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
| 266 |
|
oveq2 |
|- ( n = N -> ( 2 x. n ) = ( 2 x. N ) ) |
| 267 |
266
|
oveq2d |
|- ( n = N -> ( 1 + ( 2 x. n ) ) = ( 1 + ( 2 x. N ) ) ) |
| 268 |
267
|
oveq1d |
|- ( n = N -> ( ( 1 + ( 2 x. n ) ) / 2 ) = ( ( 1 + ( 2 x. N ) ) / 2 ) ) |
| 269 |
|
oveq1 |
|- ( n = N -> ( n + 1 ) = ( N + 1 ) ) |
| 270 |
|
id |
|- ( n = N -> n = N ) |
| 271 |
269 270
|
oveq12d |
|- ( n = N -> ( ( n + 1 ) / n ) = ( ( N + 1 ) / N ) ) |
| 272 |
271
|
fveq2d |
|- ( n = N -> ( log ` ( ( n + 1 ) / n ) ) = ( log ` ( ( N + 1 ) / N ) ) ) |
| 273 |
268 272
|
oveq12d |
|- ( n = N -> ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) |
| 274 |
273
|
oveq1d |
|- ( n = N -> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
| 275 |
|
id |
|- ( N e. NN -> N e. NN ) |
| 276 |
127 255
|
mulcld |
|- ( N e. NN -> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) e. CC ) |
| 277 |
276 90
|
subcld |
|- ( N e. NN -> ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) |
| 278 |
1 274 275 277
|
fvmptd3 |
|- ( N e. NN -> ( J ` N ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
| 279 |
265 278
|
breqtrrd |
|- ( N e. NN -> seq 1 ( + , K ) ~~> ( J ` N ) ) |