Step |
Hyp |
Ref |
Expression |
1 |
|
stirlinglem8.1 |
|- F/ n ph |
2 |
|
stirlinglem8.2 |
|- F/_ n A |
3 |
|
stirlinglem8.3 |
|- F/_ n D |
4 |
|
stirlinglem8.4 |
|- D = ( n e. NN |-> ( A ` ( 2 x. n ) ) ) |
5 |
|
stirlinglem8.5 |
|- ( ph -> A : NN --> RR+ ) |
6 |
|
stirlinglem8.6 |
|- F = ( n e. NN |-> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
7 |
|
stirlinglem8.7 |
|- L = ( n e. NN |-> ( ( A ` n ) ^ 4 ) ) |
8 |
|
stirlinglem8.8 |
|- M = ( n e. NN |-> ( ( D ` n ) ^ 2 ) ) |
9 |
|
stirlinglem8.9 |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) e. RR+ ) |
10 |
|
stirlinglem8.10 |
|- ( ph -> C e. RR+ ) |
11 |
|
stirlinglem8.11 |
|- ( ph -> A ~~> C ) |
12 |
|
nfmpt1 |
|- F/_ n ( n e. NN |-> ( ( A ` n ) ^ 4 ) ) |
13 |
7 12
|
nfcxfr |
|- F/_ n L |
14 |
|
nfmpt1 |
|- F/_ n ( n e. NN |-> ( ( D ` n ) ^ 2 ) ) |
15 |
8 14
|
nfcxfr |
|- F/_ n M |
16 |
|
nfmpt1 |
|- F/_ n ( n e. NN |-> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
17 |
6 16
|
nfcxfr |
|- F/_ n F |
18 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
19 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
20 |
|
rrpsscn |
|- RR+ C_ CC |
21 |
|
fss |
|- ( ( A : NN --> RR+ /\ RR+ C_ CC ) -> A : NN --> CC ) |
22 |
5 20 21
|
sylancl |
|- ( ph -> A : NN --> CC ) |
23 |
|
4nn0 |
|- 4 e. NN0 |
24 |
23
|
a1i |
|- ( ph -> 4 e. NN0 ) |
25 |
|
nnex |
|- NN e. _V |
26 |
25
|
mptex |
|- ( n e. NN |-> ( ( A ` n ) ^ 4 ) ) e. _V |
27 |
7 26
|
eqeltri |
|- L e. _V |
28 |
27
|
a1i |
|- ( ph -> L e. _V ) |
29 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
30 |
5
|
ffvelrnda |
|- ( ( ph /\ n e. NN ) -> ( A ` n ) e. RR+ ) |
31 |
30
|
rpcnd |
|- ( ( ph /\ n e. NN ) -> ( A ` n ) e. CC ) |
32 |
23
|
a1i |
|- ( ( ph /\ n e. NN ) -> 4 e. NN0 ) |
33 |
31 32
|
expcld |
|- ( ( ph /\ n e. NN ) -> ( ( A ` n ) ^ 4 ) e. CC ) |
34 |
7
|
fvmpt2 |
|- ( ( n e. NN /\ ( ( A ` n ) ^ 4 ) e. CC ) -> ( L ` n ) = ( ( A ` n ) ^ 4 ) ) |
35 |
29 33 34
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( L ` n ) = ( ( A ` n ) ^ 4 ) ) |
36 |
1 2 13 18 19 22 11 24 28 35
|
climexp |
|- ( ph -> L ~~> ( C ^ 4 ) ) |
37 |
25
|
mptex |
|- ( n e. NN |-> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) e. _V |
38 |
6 37
|
eqeltri |
|- F e. _V |
39 |
38
|
a1i |
|- ( ph -> F e. _V ) |
40 |
22
|
adantr |
|- ( ( ph /\ n e. NN ) -> A : NN --> CC ) |
41 |
|
2nn |
|- 2 e. NN |
42 |
41
|
a1i |
|- ( n e. NN -> 2 e. NN ) |
43 |
|
id |
|- ( n e. NN -> n e. NN ) |
44 |
42 43
|
nnmulcld |
|- ( n e. NN -> ( 2 x. n ) e. NN ) |
45 |
44
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( 2 x. n ) e. NN ) |
46 |
40 45
|
ffvelrnd |
|- ( ( ph /\ n e. NN ) -> ( A ` ( 2 x. n ) ) e. CC ) |
47 |
1 46 4
|
fmptdf |
|- ( ph -> D : NN --> CC ) |
48 |
|
nfmpt1 |
|- F/_ n ( n e. NN |-> ( 2 x. n ) ) |
49 |
|
fex |
|- ( ( A : NN --> CC /\ NN e. _V ) -> A e. _V ) |
50 |
22 25 49
|
sylancl |
|- ( ph -> A e. _V ) |
51 |
|
1nn |
|- 1 e. NN |
52 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
53 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
54 |
52 53
|
mulcld |
|- ( ph -> ( 2 x. 1 ) e. CC ) |
55 |
|
oveq2 |
|- ( n = 1 -> ( 2 x. n ) = ( 2 x. 1 ) ) |
56 |
|
eqid |
|- ( n e. NN |-> ( 2 x. n ) ) = ( n e. NN |-> ( 2 x. n ) ) |
57 |
55 56
|
fvmptg |
|- ( ( 1 e. NN /\ ( 2 x. 1 ) e. CC ) -> ( ( n e. NN |-> ( 2 x. n ) ) ` 1 ) = ( 2 x. 1 ) ) |
58 |
51 54 57
|
sylancr |
|- ( ph -> ( ( n e. NN |-> ( 2 x. n ) ) ` 1 ) = ( 2 x. 1 ) ) |
59 |
41
|
a1i |
|- ( ph -> 2 e. NN ) |
60 |
51
|
a1i |
|- ( ph -> 1 e. NN ) |
61 |
59 60
|
nnmulcld |
|- ( ph -> ( 2 x. 1 ) e. NN ) |
62 |
58 61
|
eqeltrd |
|- ( ph -> ( ( n e. NN |-> ( 2 x. n ) ) ` 1 ) e. NN ) |
63 |
|
1red |
|- ( n e. NN -> 1 e. RR ) |
64 |
42
|
nnred |
|- ( n e. NN -> 2 e. RR ) |
65 |
44
|
nnred |
|- ( n e. NN -> ( 2 x. n ) e. RR ) |
66 |
42
|
nnge1d |
|- ( n e. NN -> 1 <_ 2 ) |
67 |
63 64 65 66
|
leadd2dd |
|- ( n e. NN -> ( ( 2 x. n ) + 1 ) <_ ( ( 2 x. n ) + 2 ) ) |
68 |
56
|
fvmpt2 |
|- ( ( n e. NN /\ ( 2 x. n ) e. NN ) -> ( ( n e. NN |-> ( 2 x. n ) ) ` n ) = ( 2 x. n ) ) |
69 |
44 68
|
mpdan |
|- ( n e. NN -> ( ( n e. NN |-> ( 2 x. n ) ) ` n ) = ( 2 x. n ) ) |
70 |
69
|
oveq1d |
|- ( n e. NN -> ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) = ( ( 2 x. n ) + 1 ) ) |
71 |
|
oveq2 |
|- ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) |
72 |
71
|
cbvmptv |
|- ( n e. NN |-> ( 2 x. n ) ) = ( k e. NN |-> ( 2 x. k ) ) |
73 |
72
|
a1i |
|- ( n e. NN -> ( n e. NN |-> ( 2 x. n ) ) = ( k e. NN |-> ( 2 x. k ) ) ) |
74 |
|
simpr |
|- ( ( n e. NN /\ k = ( n + 1 ) ) -> k = ( n + 1 ) ) |
75 |
74
|
oveq2d |
|- ( ( n e. NN /\ k = ( n + 1 ) ) -> ( 2 x. k ) = ( 2 x. ( n + 1 ) ) ) |
76 |
|
peano2nn |
|- ( n e. NN -> ( n + 1 ) e. NN ) |
77 |
42 76
|
nnmulcld |
|- ( n e. NN -> ( 2 x. ( n + 1 ) ) e. NN ) |
78 |
73 75 76 77
|
fvmptd |
|- ( n e. NN -> ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) = ( 2 x. ( n + 1 ) ) ) |
79 |
|
2cnd |
|- ( n e. NN -> 2 e. CC ) |
80 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
81 |
|
1cnd |
|- ( n e. NN -> 1 e. CC ) |
82 |
79 80 81
|
adddid |
|- ( n e. NN -> ( 2 x. ( n + 1 ) ) = ( ( 2 x. n ) + ( 2 x. 1 ) ) ) |
83 |
79
|
mulid1d |
|- ( n e. NN -> ( 2 x. 1 ) = 2 ) |
84 |
83
|
oveq2d |
|- ( n e. NN -> ( ( 2 x. n ) + ( 2 x. 1 ) ) = ( ( 2 x. n ) + 2 ) ) |
85 |
78 82 84
|
3eqtrd |
|- ( n e. NN -> ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) = ( ( 2 x. n ) + 2 ) ) |
86 |
67 70 85
|
3brtr4d |
|- ( n e. NN -> ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) <_ ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) ) |
87 |
44
|
nnzd |
|- ( n e. NN -> ( 2 x. n ) e. ZZ ) |
88 |
69 87
|
eqeltrd |
|- ( n e. NN -> ( ( n e. NN |-> ( 2 x. n ) ) ` n ) e. ZZ ) |
89 |
88
|
peano2zd |
|- ( n e. NN -> ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) e. ZZ ) |
90 |
77
|
nnzd |
|- ( n e. NN -> ( 2 x. ( n + 1 ) ) e. ZZ ) |
91 |
78 90
|
eqeltrd |
|- ( n e. NN -> ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) e. ZZ ) |
92 |
|
eluz |
|- ( ( ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) e. ZZ /\ ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) e. ZZ ) -> ( ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) e. ( ZZ>= ` ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) ) <-> ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) <_ ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) ) ) |
93 |
89 91 92
|
syl2anc |
|- ( n e. NN -> ( ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) e. ( ZZ>= ` ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) ) <-> ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) <_ ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) ) ) |
94 |
86 93
|
mpbird |
|- ( n e. NN -> ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) e. ( ZZ>= ` ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) ) ) |
95 |
94
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) e. ( ZZ>= ` ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) ) ) |
96 |
25
|
mptex |
|- ( n e. NN |-> ( A ` ( 2 x. n ) ) ) e. _V |
97 |
4 96
|
eqeltri |
|- D e. _V |
98 |
97
|
a1i |
|- ( ph -> D e. _V ) |
99 |
4
|
fvmpt2 |
|- ( ( n e. NN /\ ( A ` ( 2 x. n ) ) e. CC ) -> ( D ` n ) = ( A ` ( 2 x. n ) ) ) |
100 |
29 46 99
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) = ( A ` ( 2 x. n ) ) ) |
101 |
69
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( ( n e. NN |-> ( 2 x. n ) ) ` n ) = ( 2 x. n ) ) |
102 |
101
|
eqcomd |
|- ( ( ph /\ n e. NN ) -> ( 2 x. n ) = ( ( n e. NN |-> ( 2 x. n ) ) ` n ) ) |
103 |
102
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( A ` ( 2 x. n ) ) = ( A ` ( ( n e. NN |-> ( 2 x. n ) ) ` n ) ) ) |
104 |
100 103
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) = ( A ` ( ( n e. NN |-> ( 2 x. n ) ) ` n ) ) ) |
105 |
1 2 3 48 18 19 50 31 11 62 95 98 104
|
climsuse |
|- ( ph -> D ~~> C ) |
106 |
|
2nn0 |
|- 2 e. NN0 |
107 |
106
|
a1i |
|- ( ph -> 2 e. NN0 ) |
108 |
25
|
mptex |
|- ( n e. NN |-> ( ( D ` n ) ^ 2 ) ) e. _V |
109 |
8 108
|
eqeltri |
|- M e. _V |
110 |
109
|
a1i |
|- ( ph -> M e. _V ) |
111 |
9
|
rpcnd |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) e. CC ) |
112 |
111
|
sqcld |
|- ( ( ph /\ n e. NN ) -> ( ( D ` n ) ^ 2 ) e. CC ) |
113 |
8
|
fvmpt2 |
|- ( ( n e. NN /\ ( ( D ` n ) ^ 2 ) e. CC ) -> ( M ` n ) = ( ( D ` n ) ^ 2 ) ) |
114 |
29 112 113
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( M ` n ) = ( ( D ` n ) ^ 2 ) ) |
115 |
1 3 15 18 19 47 105 107 110 114
|
climexp |
|- ( ph -> M ~~> ( C ^ 2 ) ) |
116 |
10
|
rpcnd |
|- ( ph -> C e. CC ) |
117 |
10
|
rpne0d |
|- ( ph -> C =/= 0 ) |
118 |
|
2z |
|- 2 e. ZZ |
119 |
118
|
a1i |
|- ( ph -> 2 e. ZZ ) |
120 |
116 117 119
|
expne0d |
|- ( ph -> ( C ^ 2 ) =/= 0 ) |
121 |
1 33 7
|
fmptdf |
|- ( ph -> L : NN --> CC ) |
122 |
121
|
ffvelrnda |
|- ( ( ph /\ n e. NN ) -> ( L ` n ) e. CC ) |
123 |
114 112
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( M ` n ) e. CC ) |
124 |
100
|
oveq1d |
|- ( ( ph /\ n e. NN ) -> ( ( D ` n ) ^ 2 ) = ( ( A ` ( 2 x. n ) ) ^ 2 ) ) |
125 |
114 124
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> ( M ` n ) = ( ( A ` ( 2 x. n ) ) ^ 2 ) ) |
126 |
100 9
|
eqeltrrd |
|- ( ( ph /\ n e. NN ) -> ( A ` ( 2 x. n ) ) e. RR+ ) |
127 |
118
|
a1i |
|- ( ( ph /\ n e. NN ) -> 2 e. ZZ ) |
128 |
126 127
|
rpexpcld |
|- ( ( ph /\ n e. NN ) -> ( ( A ` ( 2 x. n ) ) ^ 2 ) e. RR+ ) |
129 |
125 128
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( M ` n ) e. RR+ ) |
130 |
129
|
rpne0d |
|- ( ( ph /\ n e. NN ) -> ( M ` n ) =/= 0 ) |
131 |
130
|
neneqd |
|- ( ( ph /\ n e. NN ) -> -. ( M ` n ) = 0 ) |
132 |
|
0cn |
|- 0 e. CC |
133 |
|
elsn2g |
|- ( 0 e. CC -> ( ( M ` n ) e. { 0 } <-> ( M ` n ) = 0 ) ) |
134 |
132 133
|
ax-mp |
|- ( ( M ` n ) e. { 0 } <-> ( M ` n ) = 0 ) |
135 |
131 134
|
sylnibr |
|- ( ( ph /\ n e. NN ) -> -. ( M ` n ) e. { 0 } ) |
136 |
123 135
|
eldifd |
|- ( ( ph /\ n e. NN ) -> ( M ` n ) e. ( CC \ { 0 } ) ) |
137 |
32
|
nn0zd |
|- ( ( ph /\ n e. NN ) -> 4 e. ZZ ) |
138 |
30 137
|
rpexpcld |
|- ( ( ph /\ n e. NN ) -> ( ( A ` n ) ^ 4 ) e. RR+ ) |
139 |
9 127
|
rpexpcld |
|- ( ( ph /\ n e. NN ) -> ( ( D ` n ) ^ 2 ) e. RR+ ) |
140 |
138 139
|
rpdivcld |
|- ( ( ph /\ n e. NN ) -> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) e. RR+ ) |
141 |
6
|
fvmpt2 |
|- ( ( n e. NN /\ ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) e. RR+ ) -> ( F ` n ) = ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
142 |
29 140 141
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) = ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
143 |
7
|
fvmpt2 |
|- ( ( n e. NN /\ ( ( A ` n ) ^ 4 ) e. RR+ ) -> ( L ` n ) = ( ( A ` n ) ^ 4 ) ) |
144 |
29 138 143
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( L ` n ) = ( ( A ` n ) ^ 4 ) ) |
145 |
144 114
|
oveq12d |
|- ( ( ph /\ n e. NN ) -> ( ( L ` n ) / ( M ` n ) ) = ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
146 |
142 145
|
eqtr4d |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) = ( ( L ` n ) / ( M ` n ) ) ) |
147 |
1 13 15 17 18 19 36 39 115 120 122 136 146
|
climdivf |
|- ( ph -> F ~~> ( ( C ^ 4 ) / ( C ^ 2 ) ) ) |
148 |
|
2cn |
|- 2 e. CC |
149 |
|
2p2e4 |
|- ( 2 + 2 ) = 4 |
150 |
148 148 149
|
mvlladdi |
|- 2 = ( 4 - 2 ) |
151 |
150
|
a1i |
|- ( ph -> 2 = ( 4 - 2 ) ) |
152 |
151
|
oveq2d |
|- ( ph -> ( C ^ 2 ) = ( C ^ ( 4 - 2 ) ) ) |
153 |
24
|
nn0zd |
|- ( ph -> 4 e. ZZ ) |
154 |
116 117 119 153
|
expsubd |
|- ( ph -> ( C ^ ( 4 - 2 ) ) = ( ( C ^ 4 ) / ( C ^ 2 ) ) ) |
155 |
152 154
|
eqtrd |
|- ( ph -> ( C ^ 2 ) = ( ( C ^ 4 ) / ( C ^ 2 ) ) ) |
156 |
147 155
|
breqtrrd |
|- ( ph -> F ~~> ( C ^ 2 ) ) |