| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stirlinglem8.1 |
|- F/ n ph |
| 2 |
|
stirlinglem8.2 |
|- F/_ n A |
| 3 |
|
stirlinglem8.3 |
|- F/_ n D |
| 4 |
|
stirlinglem8.4 |
|- D = ( n e. NN |-> ( A ` ( 2 x. n ) ) ) |
| 5 |
|
stirlinglem8.5 |
|- ( ph -> A : NN --> RR+ ) |
| 6 |
|
stirlinglem8.6 |
|- F = ( n e. NN |-> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
| 7 |
|
stirlinglem8.7 |
|- L = ( n e. NN |-> ( ( A ` n ) ^ 4 ) ) |
| 8 |
|
stirlinglem8.8 |
|- M = ( n e. NN |-> ( ( D ` n ) ^ 2 ) ) |
| 9 |
|
stirlinglem8.9 |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) e. RR+ ) |
| 10 |
|
stirlinglem8.10 |
|- ( ph -> C e. RR+ ) |
| 11 |
|
stirlinglem8.11 |
|- ( ph -> A ~~> C ) |
| 12 |
|
nfmpt1 |
|- F/_ n ( n e. NN |-> ( ( A ` n ) ^ 4 ) ) |
| 13 |
7 12
|
nfcxfr |
|- F/_ n L |
| 14 |
|
nfmpt1 |
|- F/_ n ( n e. NN |-> ( ( D ` n ) ^ 2 ) ) |
| 15 |
8 14
|
nfcxfr |
|- F/_ n M |
| 16 |
|
nfmpt1 |
|- F/_ n ( n e. NN |-> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
| 17 |
6 16
|
nfcxfr |
|- F/_ n F |
| 18 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 19 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 20 |
|
rrpsscn |
|- RR+ C_ CC |
| 21 |
|
fss |
|- ( ( A : NN --> RR+ /\ RR+ C_ CC ) -> A : NN --> CC ) |
| 22 |
5 20 21
|
sylancl |
|- ( ph -> A : NN --> CC ) |
| 23 |
|
4nn0 |
|- 4 e. NN0 |
| 24 |
23
|
a1i |
|- ( ph -> 4 e. NN0 ) |
| 25 |
|
nnex |
|- NN e. _V |
| 26 |
25
|
mptex |
|- ( n e. NN |-> ( ( A ` n ) ^ 4 ) ) e. _V |
| 27 |
7 26
|
eqeltri |
|- L e. _V |
| 28 |
27
|
a1i |
|- ( ph -> L e. _V ) |
| 29 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
| 30 |
5
|
ffvelcdmda |
|- ( ( ph /\ n e. NN ) -> ( A ` n ) e. RR+ ) |
| 31 |
30
|
rpcnd |
|- ( ( ph /\ n e. NN ) -> ( A ` n ) e. CC ) |
| 32 |
23
|
a1i |
|- ( ( ph /\ n e. NN ) -> 4 e. NN0 ) |
| 33 |
31 32
|
expcld |
|- ( ( ph /\ n e. NN ) -> ( ( A ` n ) ^ 4 ) e. CC ) |
| 34 |
7
|
fvmpt2 |
|- ( ( n e. NN /\ ( ( A ` n ) ^ 4 ) e. CC ) -> ( L ` n ) = ( ( A ` n ) ^ 4 ) ) |
| 35 |
29 33 34
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( L ` n ) = ( ( A ` n ) ^ 4 ) ) |
| 36 |
1 2 13 18 19 22 11 24 28 35
|
climexp |
|- ( ph -> L ~~> ( C ^ 4 ) ) |
| 37 |
25
|
mptex |
|- ( n e. NN |-> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) e. _V |
| 38 |
6 37
|
eqeltri |
|- F e. _V |
| 39 |
38
|
a1i |
|- ( ph -> F e. _V ) |
| 40 |
22
|
adantr |
|- ( ( ph /\ n e. NN ) -> A : NN --> CC ) |
| 41 |
|
2nn |
|- 2 e. NN |
| 42 |
41
|
a1i |
|- ( n e. NN -> 2 e. NN ) |
| 43 |
|
id |
|- ( n e. NN -> n e. NN ) |
| 44 |
42 43
|
nnmulcld |
|- ( n e. NN -> ( 2 x. n ) e. NN ) |
| 45 |
44
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( 2 x. n ) e. NN ) |
| 46 |
40 45
|
ffvelcdmd |
|- ( ( ph /\ n e. NN ) -> ( A ` ( 2 x. n ) ) e. CC ) |
| 47 |
1 46 4
|
fmptdf |
|- ( ph -> D : NN --> CC ) |
| 48 |
|
nfmpt1 |
|- F/_ n ( n e. NN |-> ( 2 x. n ) ) |
| 49 |
|
fex |
|- ( ( A : NN --> CC /\ NN e. _V ) -> A e. _V ) |
| 50 |
22 25 49
|
sylancl |
|- ( ph -> A e. _V ) |
| 51 |
|
1nn |
|- 1 e. NN |
| 52 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 53 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 54 |
52 53
|
mulcld |
|- ( ph -> ( 2 x. 1 ) e. CC ) |
| 55 |
|
oveq2 |
|- ( n = 1 -> ( 2 x. n ) = ( 2 x. 1 ) ) |
| 56 |
|
eqid |
|- ( n e. NN |-> ( 2 x. n ) ) = ( n e. NN |-> ( 2 x. n ) ) |
| 57 |
55 56
|
fvmptg |
|- ( ( 1 e. NN /\ ( 2 x. 1 ) e. CC ) -> ( ( n e. NN |-> ( 2 x. n ) ) ` 1 ) = ( 2 x. 1 ) ) |
| 58 |
51 54 57
|
sylancr |
|- ( ph -> ( ( n e. NN |-> ( 2 x. n ) ) ` 1 ) = ( 2 x. 1 ) ) |
| 59 |
41
|
a1i |
|- ( ph -> 2 e. NN ) |
| 60 |
51
|
a1i |
|- ( ph -> 1 e. NN ) |
| 61 |
59 60
|
nnmulcld |
|- ( ph -> ( 2 x. 1 ) e. NN ) |
| 62 |
58 61
|
eqeltrd |
|- ( ph -> ( ( n e. NN |-> ( 2 x. n ) ) ` 1 ) e. NN ) |
| 63 |
|
1red |
|- ( n e. NN -> 1 e. RR ) |
| 64 |
42
|
nnred |
|- ( n e. NN -> 2 e. RR ) |
| 65 |
44
|
nnred |
|- ( n e. NN -> ( 2 x. n ) e. RR ) |
| 66 |
42
|
nnge1d |
|- ( n e. NN -> 1 <_ 2 ) |
| 67 |
63 64 65 66
|
leadd2dd |
|- ( n e. NN -> ( ( 2 x. n ) + 1 ) <_ ( ( 2 x. n ) + 2 ) ) |
| 68 |
56
|
fvmpt2 |
|- ( ( n e. NN /\ ( 2 x. n ) e. NN ) -> ( ( n e. NN |-> ( 2 x. n ) ) ` n ) = ( 2 x. n ) ) |
| 69 |
44 68
|
mpdan |
|- ( n e. NN -> ( ( n e. NN |-> ( 2 x. n ) ) ` n ) = ( 2 x. n ) ) |
| 70 |
69
|
oveq1d |
|- ( n e. NN -> ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) = ( ( 2 x. n ) + 1 ) ) |
| 71 |
|
oveq2 |
|- ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) |
| 72 |
71
|
cbvmptv |
|- ( n e. NN |-> ( 2 x. n ) ) = ( k e. NN |-> ( 2 x. k ) ) |
| 73 |
72
|
a1i |
|- ( n e. NN -> ( n e. NN |-> ( 2 x. n ) ) = ( k e. NN |-> ( 2 x. k ) ) ) |
| 74 |
|
simpr |
|- ( ( n e. NN /\ k = ( n + 1 ) ) -> k = ( n + 1 ) ) |
| 75 |
74
|
oveq2d |
|- ( ( n e. NN /\ k = ( n + 1 ) ) -> ( 2 x. k ) = ( 2 x. ( n + 1 ) ) ) |
| 76 |
|
peano2nn |
|- ( n e. NN -> ( n + 1 ) e. NN ) |
| 77 |
42 76
|
nnmulcld |
|- ( n e. NN -> ( 2 x. ( n + 1 ) ) e. NN ) |
| 78 |
73 75 76 77
|
fvmptd |
|- ( n e. NN -> ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) = ( 2 x. ( n + 1 ) ) ) |
| 79 |
|
2cnd |
|- ( n e. NN -> 2 e. CC ) |
| 80 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
| 81 |
|
1cnd |
|- ( n e. NN -> 1 e. CC ) |
| 82 |
79 80 81
|
adddid |
|- ( n e. NN -> ( 2 x. ( n + 1 ) ) = ( ( 2 x. n ) + ( 2 x. 1 ) ) ) |
| 83 |
79
|
mulridd |
|- ( n e. NN -> ( 2 x. 1 ) = 2 ) |
| 84 |
83
|
oveq2d |
|- ( n e. NN -> ( ( 2 x. n ) + ( 2 x. 1 ) ) = ( ( 2 x. n ) + 2 ) ) |
| 85 |
78 82 84
|
3eqtrd |
|- ( n e. NN -> ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) = ( ( 2 x. n ) + 2 ) ) |
| 86 |
67 70 85
|
3brtr4d |
|- ( n e. NN -> ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) <_ ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) ) |
| 87 |
44
|
nnzd |
|- ( n e. NN -> ( 2 x. n ) e. ZZ ) |
| 88 |
69 87
|
eqeltrd |
|- ( n e. NN -> ( ( n e. NN |-> ( 2 x. n ) ) ` n ) e. ZZ ) |
| 89 |
88
|
peano2zd |
|- ( n e. NN -> ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) e. ZZ ) |
| 90 |
77
|
nnzd |
|- ( n e. NN -> ( 2 x. ( n + 1 ) ) e. ZZ ) |
| 91 |
78 90
|
eqeltrd |
|- ( n e. NN -> ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) e. ZZ ) |
| 92 |
|
eluz |
|- ( ( ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) e. ZZ /\ ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) e. ZZ ) -> ( ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) e. ( ZZ>= ` ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) ) <-> ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) <_ ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) ) ) |
| 93 |
89 91 92
|
syl2anc |
|- ( n e. NN -> ( ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) e. ( ZZ>= ` ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) ) <-> ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) <_ ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) ) ) |
| 94 |
86 93
|
mpbird |
|- ( n e. NN -> ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) e. ( ZZ>= ` ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) ) ) |
| 95 |
94
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) e. ( ZZ>= ` ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) ) ) |
| 96 |
25
|
mptex |
|- ( n e. NN |-> ( A ` ( 2 x. n ) ) ) e. _V |
| 97 |
4 96
|
eqeltri |
|- D e. _V |
| 98 |
97
|
a1i |
|- ( ph -> D e. _V ) |
| 99 |
4
|
fvmpt2 |
|- ( ( n e. NN /\ ( A ` ( 2 x. n ) ) e. CC ) -> ( D ` n ) = ( A ` ( 2 x. n ) ) ) |
| 100 |
29 46 99
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) = ( A ` ( 2 x. n ) ) ) |
| 101 |
69
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( ( n e. NN |-> ( 2 x. n ) ) ` n ) = ( 2 x. n ) ) |
| 102 |
101
|
eqcomd |
|- ( ( ph /\ n e. NN ) -> ( 2 x. n ) = ( ( n e. NN |-> ( 2 x. n ) ) ` n ) ) |
| 103 |
102
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( A ` ( 2 x. n ) ) = ( A ` ( ( n e. NN |-> ( 2 x. n ) ) ` n ) ) ) |
| 104 |
100 103
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) = ( A ` ( ( n e. NN |-> ( 2 x. n ) ) ` n ) ) ) |
| 105 |
1 2 3 48 18 19 50 31 11 62 95 98 104
|
climsuse |
|- ( ph -> D ~~> C ) |
| 106 |
|
2nn0 |
|- 2 e. NN0 |
| 107 |
106
|
a1i |
|- ( ph -> 2 e. NN0 ) |
| 108 |
25
|
mptex |
|- ( n e. NN |-> ( ( D ` n ) ^ 2 ) ) e. _V |
| 109 |
8 108
|
eqeltri |
|- M e. _V |
| 110 |
109
|
a1i |
|- ( ph -> M e. _V ) |
| 111 |
9
|
rpcnd |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) e. CC ) |
| 112 |
111
|
sqcld |
|- ( ( ph /\ n e. NN ) -> ( ( D ` n ) ^ 2 ) e. CC ) |
| 113 |
8
|
fvmpt2 |
|- ( ( n e. NN /\ ( ( D ` n ) ^ 2 ) e. CC ) -> ( M ` n ) = ( ( D ` n ) ^ 2 ) ) |
| 114 |
29 112 113
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( M ` n ) = ( ( D ` n ) ^ 2 ) ) |
| 115 |
1 3 15 18 19 47 105 107 110 114
|
climexp |
|- ( ph -> M ~~> ( C ^ 2 ) ) |
| 116 |
10
|
rpcnd |
|- ( ph -> C e. CC ) |
| 117 |
10
|
rpne0d |
|- ( ph -> C =/= 0 ) |
| 118 |
|
2z |
|- 2 e. ZZ |
| 119 |
118
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 120 |
116 117 119
|
expne0d |
|- ( ph -> ( C ^ 2 ) =/= 0 ) |
| 121 |
1 33 7
|
fmptdf |
|- ( ph -> L : NN --> CC ) |
| 122 |
121
|
ffvelcdmda |
|- ( ( ph /\ n e. NN ) -> ( L ` n ) e. CC ) |
| 123 |
114 112
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( M ` n ) e. CC ) |
| 124 |
100
|
oveq1d |
|- ( ( ph /\ n e. NN ) -> ( ( D ` n ) ^ 2 ) = ( ( A ` ( 2 x. n ) ) ^ 2 ) ) |
| 125 |
114 124
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> ( M ` n ) = ( ( A ` ( 2 x. n ) ) ^ 2 ) ) |
| 126 |
100 9
|
eqeltrrd |
|- ( ( ph /\ n e. NN ) -> ( A ` ( 2 x. n ) ) e. RR+ ) |
| 127 |
118
|
a1i |
|- ( ( ph /\ n e. NN ) -> 2 e. ZZ ) |
| 128 |
126 127
|
rpexpcld |
|- ( ( ph /\ n e. NN ) -> ( ( A ` ( 2 x. n ) ) ^ 2 ) e. RR+ ) |
| 129 |
125 128
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( M ` n ) e. RR+ ) |
| 130 |
129
|
rpne0d |
|- ( ( ph /\ n e. NN ) -> ( M ` n ) =/= 0 ) |
| 131 |
130
|
neneqd |
|- ( ( ph /\ n e. NN ) -> -. ( M ` n ) = 0 ) |
| 132 |
|
0cn |
|- 0 e. CC |
| 133 |
|
elsn2g |
|- ( 0 e. CC -> ( ( M ` n ) e. { 0 } <-> ( M ` n ) = 0 ) ) |
| 134 |
132 133
|
ax-mp |
|- ( ( M ` n ) e. { 0 } <-> ( M ` n ) = 0 ) |
| 135 |
131 134
|
sylnibr |
|- ( ( ph /\ n e. NN ) -> -. ( M ` n ) e. { 0 } ) |
| 136 |
123 135
|
eldifd |
|- ( ( ph /\ n e. NN ) -> ( M ` n ) e. ( CC \ { 0 } ) ) |
| 137 |
32
|
nn0zd |
|- ( ( ph /\ n e. NN ) -> 4 e. ZZ ) |
| 138 |
30 137
|
rpexpcld |
|- ( ( ph /\ n e. NN ) -> ( ( A ` n ) ^ 4 ) e. RR+ ) |
| 139 |
9 127
|
rpexpcld |
|- ( ( ph /\ n e. NN ) -> ( ( D ` n ) ^ 2 ) e. RR+ ) |
| 140 |
138 139
|
rpdivcld |
|- ( ( ph /\ n e. NN ) -> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) e. RR+ ) |
| 141 |
6
|
fvmpt2 |
|- ( ( n e. NN /\ ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) e. RR+ ) -> ( F ` n ) = ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
| 142 |
29 140 141
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) = ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
| 143 |
7
|
fvmpt2 |
|- ( ( n e. NN /\ ( ( A ` n ) ^ 4 ) e. RR+ ) -> ( L ` n ) = ( ( A ` n ) ^ 4 ) ) |
| 144 |
29 138 143
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( L ` n ) = ( ( A ` n ) ^ 4 ) ) |
| 145 |
144 114
|
oveq12d |
|- ( ( ph /\ n e. NN ) -> ( ( L ` n ) / ( M ` n ) ) = ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
| 146 |
142 145
|
eqtr4d |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) = ( ( L ` n ) / ( M ` n ) ) ) |
| 147 |
1 13 15 17 18 19 36 39 115 120 122 136 146
|
climdivf |
|- ( ph -> F ~~> ( ( C ^ 4 ) / ( C ^ 2 ) ) ) |
| 148 |
|
2cn |
|- 2 e. CC |
| 149 |
|
2p2e4 |
|- ( 2 + 2 ) = 4 |
| 150 |
148 148 149
|
mvlladdi |
|- 2 = ( 4 - 2 ) |
| 151 |
150
|
a1i |
|- ( ph -> 2 = ( 4 - 2 ) ) |
| 152 |
151
|
oveq2d |
|- ( ph -> ( C ^ 2 ) = ( C ^ ( 4 - 2 ) ) ) |
| 153 |
24
|
nn0zd |
|- ( ph -> 4 e. ZZ ) |
| 154 |
116 117 119 153
|
expsubd |
|- ( ph -> ( C ^ ( 4 - 2 ) ) = ( ( C ^ 4 ) / ( C ^ 2 ) ) ) |
| 155 |
152 154
|
eqtrd |
|- ( ph -> ( C ^ 2 ) = ( ( C ^ 4 ) / ( C ^ 2 ) ) ) |
| 156 |
147 155
|
breqtrrd |
|- ( ph -> F ~~> ( C ^ 2 ) ) |