Metamath Proof Explorer


Theorem stirlinglem9

Description: ( ( BN ) - ( B( N + 1 ) ) ) is expressed as a limit of a series. This result will be used both to prove that B is decreasing and to prove that B is bounded (below). It will follow that B converges in the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses stirlinglem9.1
|- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) )
stirlinglem9.2
|- B = ( n e. NN |-> ( log ` ( A ` n ) ) )
stirlinglem9.3
|- J = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) )
stirlinglem9.4
|- K = ( k e. NN |-> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) )
Assertion stirlinglem9
|- ( N e. NN -> seq 1 ( + , K ) ~~> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) )

Proof

Step Hyp Ref Expression
1 stirlinglem9.1
 |-  A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) )
2 stirlinglem9.2
 |-  B = ( n e. NN |-> ( log ` ( A ` n ) ) )
3 stirlinglem9.3
 |-  J = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) )
4 stirlinglem9.4
 |-  K = ( k e. NN |-> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) )
5 eqid
 |-  ( k e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) ) = ( k e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) )
6 3 4 5 stirlinglem7
 |-  ( N e. NN -> seq 1 ( + , K ) ~~> ( J ` N ) )
7 1 2 3 stirlinglem4
 |-  ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) = ( J ` N ) )
8 6 7 breqtrrd
 |-  ( N e. NN -> seq 1 ( + , K ) ~~> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) )