Description: ( ( BN ) - ( B( N + 1 ) ) ) is expressed as a limit of a series. This result will be used both to prove that B is decreasing and to prove that B is bounded (below). It will follow that B converges in the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stirlinglem9.1 | |- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
stirlinglem9.2 | |- B = ( n e. NN |-> ( log ` ( A ` n ) ) ) |
||
stirlinglem9.3 | |- J = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) |
||
stirlinglem9.4 | |- K = ( k e. NN |-> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) ) |
||
Assertion | stirlinglem9 | |- ( N e. NN -> seq 1 ( + , K ) ~~> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stirlinglem9.1 | |- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
2 | stirlinglem9.2 | |- B = ( n e. NN |-> ( log ` ( A ` n ) ) ) |
|
3 | stirlinglem9.3 | |- J = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) |
|
4 | stirlinglem9.4 | |- K = ( k e. NN |-> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) ) |
|
5 | eqid | |- ( k e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) ) = ( k e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
|
6 | 3 4 5 | stirlinglem7 | |- ( N e. NN -> seq 1 ( + , K ) ~~> ( J ` N ) ) |
7 | 1 2 3 | stirlinglem4 | |- ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) = ( J ` N ) ) |
8 | 6 7 | breqtrrd | |- ( N e. NN -> seq 1 ( + , K ) ~~> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) ) |