| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stirlinglem9.1 |
|- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
| 2 |
|
stirlinglem9.2 |
|- B = ( n e. NN |-> ( log ` ( A ` n ) ) ) |
| 3 |
|
stirlinglem9.3 |
|- J = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) |
| 4 |
|
stirlinglem9.4 |
|- K = ( k e. NN |-> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) ) |
| 5 |
|
eqid |
|- ( k e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) ) = ( k e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 6 |
3 4 5
|
stirlinglem7 |
|- ( N e. NN -> seq 1 ( + , K ) ~~> ( J ` N ) ) |
| 7 |
1 2 3
|
stirlinglem4 |
|- ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) = ( J ` N ) ) |
| 8 |
6 7
|
breqtrrd |
|- ( N e. NN -> seq 1 ( + , K ) ~~> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) ) |