| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stirlingr.1 |  |-  S = ( n e. NN0 |-> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) | 
						
							| 2 |  | stirlingr.2 |  |-  R = ( ~~>t ` ( topGen ` ran (,) ) ) | 
						
							| 3 | 1 | stirling |  |-  ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) ~~> 1 | 
						
							| 4 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 5 |  | 1zzd |  |-  ( T. -> 1 e. ZZ ) | 
						
							| 6 |  | eqid |  |-  ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) = ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) | 
						
							| 7 |  | nnnn0 |  |-  ( n e. NN -> n e. NN0 ) | 
						
							| 8 |  | faccl |  |-  ( n e. NN0 -> ( ! ` n ) e. NN ) | 
						
							| 9 |  | nnre |  |-  ( ( ! ` n ) e. NN -> ( ! ` n ) e. RR ) | 
						
							| 10 | 7 8 9 | 3syl |  |-  ( n e. NN -> ( ! ` n ) e. RR ) | 
						
							| 11 |  | 2re |  |-  2 e. RR | 
						
							| 12 | 11 | a1i |  |-  ( n e. NN -> 2 e. RR ) | 
						
							| 13 |  | pire |  |-  _pi e. RR | 
						
							| 14 | 13 | a1i |  |-  ( n e. NN -> _pi e. RR ) | 
						
							| 15 | 12 14 | remulcld |  |-  ( n e. NN -> ( 2 x. _pi ) e. RR ) | 
						
							| 16 |  | nnre |  |-  ( n e. NN -> n e. RR ) | 
						
							| 17 | 15 16 | remulcld |  |-  ( n e. NN -> ( ( 2 x. _pi ) x. n ) e. RR ) | 
						
							| 18 |  | 0re |  |-  0 e. RR | 
						
							| 19 | 18 | a1i |  |-  ( n e. NN -> 0 e. RR ) | 
						
							| 20 |  | 2pos |  |-  0 < 2 | 
						
							| 21 | 20 | a1i |  |-  ( n e. NN -> 0 < 2 ) | 
						
							| 22 | 19 12 21 | ltled |  |-  ( n e. NN -> 0 <_ 2 ) | 
						
							| 23 |  | pipos |  |-  0 < _pi | 
						
							| 24 | 18 13 23 | ltleii |  |-  0 <_ _pi | 
						
							| 25 | 24 | a1i |  |-  ( n e. NN -> 0 <_ _pi ) | 
						
							| 26 | 12 14 22 25 | mulge0d |  |-  ( n e. NN -> 0 <_ ( 2 x. _pi ) ) | 
						
							| 27 | 7 | nn0ge0d |  |-  ( n e. NN -> 0 <_ n ) | 
						
							| 28 | 15 16 26 27 | mulge0d |  |-  ( n e. NN -> 0 <_ ( ( 2 x. _pi ) x. n ) ) | 
						
							| 29 | 17 28 | resqrtcld |  |-  ( n e. NN -> ( sqrt ` ( ( 2 x. _pi ) x. n ) ) e. RR ) | 
						
							| 30 |  | ere |  |-  _e e. RR | 
						
							| 31 | 30 | a1i |  |-  ( n e. NN -> _e e. RR ) | 
						
							| 32 |  | epos |  |-  0 < _e | 
						
							| 33 | 18 32 | gtneii |  |-  _e =/= 0 | 
						
							| 34 | 33 | a1i |  |-  ( n e. NN -> _e =/= 0 ) | 
						
							| 35 | 16 31 34 | redivcld |  |-  ( n e. NN -> ( n / _e ) e. RR ) | 
						
							| 36 | 35 7 | reexpcld |  |-  ( n e. NN -> ( ( n / _e ) ^ n ) e. RR ) | 
						
							| 37 | 29 36 | remulcld |  |-  ( n e. NN -> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) e. RR ) | 
						
							| 38 | 1 | fvmpt2 |  |-  ( ( n e. NN0 /\ ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) e. RR ) -> ( S ` n ) = ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) | 
						
							| 39 | 7 37 38 | syl2anc |  |-  ( n e. NN -> ( S ` n ) = ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) | 
						
							| 40 |  | 2rp |  |-  2 e. RR+ | 
						
							| 41 | 40 | a1i |  |-  ( n e. NN -> 2 e. RR+ ) | 
						
							| 42 |  | pirp |  |-  _pi e. RR+ | 
						
							| 43 | 42 | a1i |  |-  ( n e. NN -> _pi e. RR+ ) | 
						
							| 44 | 41 43 | rpmulcld |  |-  ( n e. NN -> ( 2 x. _pi ) e. RR+ ) | 
						
							| 45 |  | nnrp |  |-  ( n e. NN -> n e. RR+ ) | 
						
							| 46 | 44 45 | rpmulcld |  |-  ( n e. NN -> ( ( 2 x. _pi ) x. n ) e. RR+ ) | 
						
							| 47 | 46 | rpsqrtcld |  |-  ( n e. NN -> ( sqrt ` ( ( 2 x. _pi ) x. n ) ) e. RR+ ) | 
						
							| 48 |  | epr |  |-  _e e. RR+ | 
						
							| 49 | 48 | a1i |  |-  ( n e. NN -> _e e. RR+ ) | 
						
							| 50 | 45 49 | rpdivcld |  |-  ( n e. NN -> ( n / _e ) e. RR+ ) | 
						
							| 51 |  | nnz |  |-  ( n e. NN -> n e. ZZ ) | 
						
							| 52 | 50 51 | rpexpcld |  |-  ( n e. NN -> ( ( n / _e ) ^ n ) e. RR+ ) | 
						
							| 53 | 47 52 | rpmulcld |  |-  ( n e. NN -> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) e. RR+ ) | 
						
							| 54 | 39 53 | eqeltrd |  |-  ( n e. NN -> ( S ` n ) e. RR+ ) | 
						
							| 55 | 10 54 | rerpdivcld |  |-  ( n e. NN -> ( ( ! ` n ) / ( S ` n ) ) e. RR ) | 
						
							| 56 | 6 55 | fmpti |  |-  ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) : NN --> RR | 
						
							| 57 | 56 | a1i |  |-  ( T. -> ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) : NN --> RR ) | 
						
							| 58 | 2 4 5 57 | climreeq |  |-  ( T. -> ( ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) R 1 <-> ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) ~~> 1 ) ) | 
						
							| 59 | 58 | mptru |  |-  ( ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) R 1 <-> ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) ~~> 1 ) | 
						
							| 60 | 3 59 | mpbir |  |-  ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) R 1 |