| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sto1.1 |
|- A e. CH |
| 2 |
1
|
chjoi |
|- ( A vH ( _|_ ` A ) ) = ~H |
| 3 |
2
|
fveq2i |
|- ( S ` ( A vH ( _|_ ` A ) ) ) = ( S ` ~H ) |
| 4 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
| 5 |
1 4
|
pm3.2i |
|- ( A e. CH /\ ( _|_ ` A ) e. CH ) |
| 6 |
1
|
chshii |
|- A e. SH |
| 7 |
|
shococss |
|- ( A e. SH -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
| 8 |
6 7
|
ax-mp |
|- A C_ ( _|_ ` ( _|_ ` A ) ) |
| 9 |
|
stj |
|- ( S e. States -> ( ( ( A e. CH /\ ( _|_ ` A ) e. CH ) /\ A C_ ( _|_ ` ( _|_ ` A ) ) ) -> ( S ` ( A vH ( _|_ ` A ) ) ) = ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) ) ) |
| 10 |
5 8 9
|
mp2ani |
|- ( S e. States -> ( S ` ( A vH ( _|_ ` A ) ) ) = ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) ) |
| 11 |
|
sthil |
|- ( S e. States -> ( S ` ~H ) = 1 ) |
| 12 |
3 10 11
|
3eqtr3a |
|- ( S e. States -> ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) = 1 ) |