| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sto1.1 |
|- A e. CH |
| 2 |
1
|
sto1i |
|- ( S e. States -> ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) = 1 ) |
| 3 |
|
stcl |
|- ( S e. States -> ( A e. CH -> ( S ` A ) e. RR ) ) |
| 4 |
1 3
|
mpi |
|- ( S e. States -> ( S ` A ) e. RR ) |
| 5 |
4
|
recnd |
|- ( S e. States -> ( S ` A ) e. CC ) |
| 6 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
| 7 |
|
stcl |
|- ( S e. States -> ( ( _|_ ` A ) e. CH -> ( S ` ( _|_ ` A ) ) e. RR ) ) |
| 8 |
6 7
|
mpi |
|- ( S e. States -> ( S ` ( _|_ ` A ) ) e. RR ) |
| 9 |
8
|
recnd |
|- ( S e. States -> ( S ` ( _|_ ` A ) ) e. CC ) |
| 10 |
|
ax-1cn |
|- 1 e. CC |
| 11 |
|
subadd |
|- ( ( 1 e. CC /\ ( S ` A ) e. CC /\ ( S ` ( _|_ ` A ) ) e. CC ) -> ( ( 1 - ( S ` A ) ) = ( S ` ( _|_ ` A ) ) <-> ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) = 1 ) ) |
| 12 |
10 11
|
mp3an1 |
|- ( ( ( S ` A ) e. CC /\ ( S ` ( _|_ ` A ) ) e. CC ) -> ( ( 1 - ( S ` A ) ) = ( S ` ( _|_ ` A ) ) <-> ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) = 1 ) ) |
| 13 |
5 9 12
|
syl2anc |
|- ( S e. States -> ( ( 1 - ( S ` A ) ) = ( S ` ( _|_ ` A ) ) <-> ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) = 1 ) ) |
| 14 |
2 13
|
mpbird |
|- ( S e. States -> ( 1 - ( S ` A ) ) = ( S ` ( _|_ ` A ) ) ) |
| 15 |
14
|
eqcomd |
|- ( S e. States -> ( S ` ( _|_ ` A ) ) = ( 1 - ( S ` A ) ) ) |