Step |
Hyp |
Ref |
Expression |
1 |
|
restuni.1 |
|- X = U. J |
2 |
1
|
toptopon |
|- ( J e. Top <-> J e. ( TopOn ` X ) ) |
3 |
|
resttopon |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) ) |
4 |
2 3
|
sylanb |
|- ( ( J e. Top /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) ) |
5 |
|
eqid |
|- { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , ( J |`t A ) >. } = { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , ( J |`t A ) >. } |
6 |
5
|
eltpsg |
|- ( ( J |`t A ) e. ( TopOn ` A ) -> { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , ( J |`t A ) >. } e. TopSp ) |
7 |
4 6
|
syl |
|- ( ( J e. Top /\ A C_ X ) -> { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , ( J |`t A ) >. } e. TopSp ) |