Metamath Proof Explorer


Theorem stoig

Description: The topological space built with a subspace topology. (Contributed by FL, 5-Jan-2009) (Proof shortened by Mario Carneiro, 1-May-2015)

Ref Expression
Hypothesis restuni.1
|- X = U. J
Assertion stoig
|- ( ( J e. Top /\ A C_ X ) -> { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , ( J |`t A ) >. } e. TopSp )

Proof

Step Hyp Ref Expression
1 restuni.1
 |-  X = U. J
2 1 toptopon
 |-  ( J e. Top <-> J e. ( TopOn ` X ) )
3 resttopon
 |-  ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) )
4 2 3 sylanb
 |-  ( ( J e. Top /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) )
5 eqid
 |-  { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , ( J |`t A ) >. } = { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , ( J |`t A ) >. }
6 5 eltpsg
 |-  ( ( J |`t A ) e. ( TopOn ` A ) -> { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , ( J |`t A ) >. } e. TopSp )
7 4 6 syl
 |-  ( ( J e. Top /\ A C_ X ) -> { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , ( J |`t A ) >. } e. TopSp )