Step |
Hyp |
Ref |
Expression |
1 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
2 |
1
|
3ad2ant1 |
|- ( ( A e. RR /\ N e. NN0 /\ A <_ 1 ) -> -u A e. RR ) |
3 |
|
simp2 |
|- ( ( A e. RR /\ N e. NN0 /\ A <_ 1 ) -> N e. NN0 ) |
4 |
|
simpr |
|- ( ( A e. RR /\ A <_ 1 ) -> A <_ 1 ) |
5 |
|
simpl |
|- ( ( A e. RR /\ A <_ 1 ) -> A e. RR ) |
6 |
|
1red |
|- ( ( A e. RR /\ A <_ 1 ) -> 1 e. RR ) |
7 |
5 6
|
lenegd |
|- ( ( A e. RR /\ A <_ 1 ) -> ( A <_ 1 <-> -u 1 <_ -u A ) ) |
8 |
4 7
|
mpbid |
|- ( ( A e. RR /\ A <_ 1 ) -> -u 1 <_ -u A ) |
9 |
8
|
3adant2 |
|- ( ( A e. RR /\ N e. NN0 /\ A <_ 1 ) -> -u 1 <_ -u A ) |
10 |
|
bernneq |
|- ( ( -u A e. RR /\ N e. NN0 /\ -u 1 <_ -u A ) -> ( 1 + ( -u A x. N ) ) <_ ( ( 1 + -u A ) ^ N ) ) |
11 |
2 3 9 10
|
syl3anc |
|- ( ( A e. RR /\ N e. NN0 /\ A <_ 1 ) -> ( 1 + ( -u A x. N ) ) <_ ( ( 1 + -u A ) ^ N ) ) |
12 |
|
recn |
|- ( A e. RR -> A e. CC ) |
13 |
12
|
3ad2ant1 |
|- ( ( A e. RR /\ N e. NN0 /\ A <_ 1 ) -> A e. CC ) |
14 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
15 |
14
|
3ad2ant2 |
|- ( ( A e. RR /\ N e. NN0 /\ A <_ 1 ) -> N e. CC ) |
16 |
|
1cnd |
|- ( ( A e. RR /\ N e. NN0 /\ A <_ 1 ) -> 1 e. CC ) |
17 |
|
mulneg1 |
|- ( ( A e. CC /\ N e. CC ) -> ( -u A x. N ) = -u ( A x. N ) ) |
18 |
17
|
oveq2d |
|- ( ( A e. CC /\ N e. CC ) -> ( 1 + ( -u A x. N ) ) = ( 1 + -u ( A x. N ) ) ) |
19 |
18
|
3adant3 |
|- ( ( A e. CC /\ N e. CC /\ 1 e. CC ) -> ( 1 + ( -u A x. N ) ) = ( 1 + -u ( A x. N ) ) ) |
20 |
|
simp3 |
|- ( ( A e. CC /\ N e. CC /\ 1 e. CC ) -> 1 e. CC ) |
21 |
|
mulcl |
|- ( ( A e. CC /\ N e. CC ) -> ( A x. N ) e. CC ) |
22 |
21
|
3adant3 |
|- ( ( A e. CC /\ N e. CC /\ 1 e. CC ) -> ( A x. N ) e. CC ) |
23 |
20 22
|
negsubd |
|- ( ( A e. CC /\ N e. CC /\ 1 e. CC ) -> ( 1 + -u ( A x. N ) ) = ( 1 - ( A x. N ) ) ) |
24 |
|
mulcom |
|- ( ( A e. CC /\ N e. CC ) -> ( A x. N ) = ( N x. A ) ) |
25 |
24
|
oveq2d |
|- ( ( A e. CC /\ N e. CC ) -> ( 1 - ( A x. N ) ) = ( 1 - ( N x. A ) ) ) |
26 |
25
|
3adant3 |
|- ( ( A e. CC /\ N e. CC /\ 1 e. CC ) -> ( 1 - ( A x. N ) ) = ( 1 - ( N x. A ) ) ) |
27 |
19 23 26
|
3eqtrd |
|- ( ( A e. CC /\ N e. CC /\ 1 e. CC ) -> ( 1 + ( -u A x. N ) ) = ( 1 - ( N x. A ) ) ) |
28 |
13 15 16 27
|
syl3anc |
|- ( ( A e. RR /\ N e. NN0 /\ A <_ 1 ) -> ( 1 + ( -u A x. N ) ) = ( 1 - ( N x. A ) ) ) |
29 |
|
1cnd |
|- ( A e. RR -> 1 e. CC ) |
30 |
29 12
|
negsubd |
|- ( A e. RR -> ( 1 + -u A ) = ( 1 - A ) ) |
31 |
30
|
oveq1d |
|- ( A e. RR -> ( ( 1 + -u A ) ^ N ) = ( ( 1 - A ) ^ N ) ) |
32 |
31
|
3ad2ant1 |
|- ( ( A e. RR /\ N e. NN0 /\ A <_ 1 ) -> ( ( 1 + -u A ) ^ N ) = ( ( 1 - A ) ^ N ) ) |
33 |
11 28 32
|
3brtr3d |
|- ( ( A e. RR /\ N e. NN0 /\ A <_ 1 ) -> ( 1 - ( N x. A ) ) <_ ( ( 1 - A ) ^ N ) ) |