Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem11.1 |
|- ( ph -> N e. NN ) |
2 |
|
stoweidlem11.2 |
|- ( ph -> t e. T ) |
3 |
|
stoweidlem11.3 |
|- ( ph -> j e. ( 1 ... N ) ) |
4 |
|
stoweidlem11.4 |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> ( X ` i ) : T --> RR ) |
5 |
|
stoweidlem11.5 |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> ( ( X ` i ) ` t ) <_ 1 ) |
6 |
|
stoweidlem11.6 |
|- ( ( ph /\ i e. ( j ... N ) ) -> ( ( X ` i ) ` t ) < ( E / N ) ) |
7 |
|
stoweidlem11.7 |
|- ( ph -> E e. RR+ ) |
8 |
|
stoweidlem11.8 |
|- ( ph -> E < ( 1 / 3 ) ) |
9 |
|
sumex |
|- sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) e. _V |
10 |
|
eqid |
|- ( t e. T |-> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) ) = ( t e. T |-> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) ) |
11 |
10
|
fvmpt2 |
|- ( ( t e. T /\ sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) e. _V ) -> ( ( t e. T |-> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) = sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) ) |
12 |
2 9 11
|
sylancl |
|- ( ph -> ( ( t e. T |-> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) = sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) ) |
13 |
|
fzfid |
|- ( ph -> ( 0 ... N ) e. Fin ) |
14 |
7
|
rpred |
|- ( ph -> E e. RR ) |
15 |
14
|
adantr |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> E e. RR ) |
16 |
2
|
adantr |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> t e. T ) |
17 |
4 16
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> ( ( X ` i ) ` t ) e. RR ) |
18 |
15 17
|
remulcld |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> ( E x. ( ( X ` i ) ` t ) ) e. RR ) |
19 |
13 18
|
fsumrecl |
|- ( ph -> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) e. RR ) |
20 |
3
|
elfzelzd |
|- ( ph -> j e. ZZ ) |
21 |
20
|
zred |
|- ( ph -> j e. RR ) |
22 |
14 21
|
remulcld |
|- ( ph -> ( E x. j ) e. RR ) |
23 |
1
|
nnred |
|- ( ph -> N e. RR ) |
24 |
23 21
|
resubcld |
|- ( ph -> ( N - j ) e. RR ) |
25 |
|
1red |
|- ( ph -> 1 e. RR ) |
26 |
24 25
|
readdcld |
|- ( ph -> ( ( N - j ) + 1 ) e. RR ) |
27 |
14 1
|
nndivred |
|- ( ph -> ( E / N ) e. RR ) |
28 |
14 27
|
remulcld |
|- ( ph -> ( E x. ( E / N ) ) e. RR ) |
29 |
26 28
|
remulcld |
|- ( ph -> ( ( ( N - j ) + 1 ) x. ( E x. ( E / N ) ) ) e. RR ) |
30 |
22 29
|
readdcld |
|- ( ph -> ( ( E x. j ) + ( ( ( N - j ) + 1 ) x. ( E x. ( E / N ) ) ) ) e. RR ) |
31 |
|
3re |
|- 3 e. RR |
32 |
31
|
a1i |
|- ( ph -> 3 e. RR ) |
33 |
|
3ne0 |
|- 3 =/= 0 |
34 |
33
|
a1i |
|- ( ph -> 3 =/= 0 ) |
35 |
32 34
|
rereccld |
|- ( ph -> ( 1 / 3 ) e. RR ) |
36 |
21 35
|
readdcld |
|- ( ph -> ( j + ( 1 / 3 ) ) e. RR ) |
37 |
36 14
|
remulcld |
|- ( ph -> ( ( j + ( 1 / 3 ) ) x. E ) e. RR ) |
38 |
|
fzfid |
|- ( ph -> ( 0 ... ( j - 1 ) ) e. Fin ) |
39 |
14
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( j - 1 ) ) ) -> E e. RR ) |
40 |
|
elfzelz |
|- ( j e. ( 1 ... N ) -> j e. ZZ ) |
41 |
|
peano2zm |
|- ( j e. ZZ -> ( j - 1 ) e. ZZ ) |
42 |
3 40 41
|
3syl |
|- ( ph -> ( j - 1 ) e. ZZ ) |
43 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
44 |
21 25
|
resubcld |
|- ( ph -> ( j - 1 ) e. RR ) |
45 |
21
|
lem1d |
|- ( ph -> ( j - 1 ) <_ j ) |
46 |
|
elfzuz3 |
|- ( j e. ( 1 ... N ) -> N e. ( ZZ>= ` j ) ) |
47 |
|
eluzle |
|- ( N e. ( ZZ>= ` j ) -> j <_ N ) |
48 |
3 46 47
|
3syl |
|- ( ph -> j <_ N ) |
49 |
44 21 23 45 48
|
letrd |
|- ( ph -> ( j - 1 ) <_ N ) |
50 |
|
eluz2 |
|- ( N e. ( ZZ>= ` ( j - 1 ) ) <-> ( ( j - 1 ) e. ZZ /\ N e. ZZ /\ ( j - 1 ) <_ N ) ) |
51 |
42 43 49 50
|
syl3anbrc |
|- ( ph -> N e. ( ZZ>= ` ( j - 1 ) ) ) |
52 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( j - 1 ) ) -> ( 0 ... ( j - 1 ) ) C_ ( 0 ... N ) ) |
53 |
51 52
|
syl |
|- ( ph -> ( 0 ... ( j - 1 ) ) C_ ( 0 ... N ) ) |
54 |
53
|
sselda |
|- ( ( ph /\ i e. ( 0 ... ( j - 1 ) ) ) -> i e. ( 0 ... N ) ) |
55 |
54 17
|
syldan |
|- ( ( ph /\ i e. ( 0 ... ( j - 1 ) ) ) -> ( ( X ` i ) ` t ) e. RR ) |
56 |
39 55
|
remulcld |
|- ( ( ph /\ i e. ( 0 ... ( j - 1 ) ) ) -> ( E x. ( ( X ` i ) ` t ) ) e. RR ) |
57 |
38 56
|
fsumrecl |
|- ( ph -> sum_ i e. ( 0 ... ( j - 1 ) ) ( E x. ( ( X ` i ) ` t ) ) e. RR ) |
58 |
57 29
|
readdcld |
|- ( ph -> ( sum_ i e. ( 0 ... ( j - 1 ) ) ( E x. ( ( X ` i ) ` t ) ) + ( ( ( N - j ) + 1 ) x. ( E x. ( E / N ) ) ) ) e. RR ) |
59 |
21
|
ltm1d |
|- ( ph -> ( j - 1 ) < j ) |
60 |
|
fzdisj |
|- ( ( j - 1 ) < j -> ( ( 0 ... ( j - 1 ) ) i^i ( j ... N ) ) = (/) ) |
61 |
59 60
|
syl |
|- ( ph -> ( ( 0 ... ( j - 1 ) ) i^i ( j ... N ) ) = (/) ) |
62 |
|
fzssp1 |
|- ( 0 ... ( N - 1 ) ) C_ ( 0 ... ( ( N - 1 ) + 1 ) ) |
63 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
64 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
65 |
63 64
|
npcand |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
66 |
65
|
oveq2d |
|- ( ph -> ( 0 ... ( ( N - 1 ) + 1 ) ) = ( 0 ... N ) ) |
67 |
62 66
|
sseqtrid |
|- ( ph -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
68 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
69 |
|
fzsubel |
|- ( ( ( 1 e. ZZ /\ N e. ZZ ) /\ ( j e. ZZ /\ 1 e. ZZ ) ) -> ( j e. ( 1 ... N ) <-> ( j - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) |
70 |
68 43 20 68 69
|
syl22anc |
|- ( ph -> ( j e. ( 1 ... N ) <-> ( j - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) |
71 |
3 70
|
mpbid |
|- ( ph -> ( j - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) |
72 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
73 |
72
|
oveq1i |
|- ( ( 1 - 1 ) ... ( N - 1 ) ) = ( 0 ... ( N - 1 ) ) |
74 |
71 73
|
eleqtrdi |
|- ( ph -> ( j - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
75 |
67 74
|
sseldd |
|- ( ph -> ( j - 1 ) e. ( 0 ... N ) ) |
76 |
|
fzsplit |
|- ( ( j - 1 ) e. ( 0 ... N ) -> ( 0 ... N ) = ( ( 0 ... ( j - 1 ) ) u. ( ( ( j - 1 ) + 1 ) ... N ) ) ) |
77 |
75 76
|
syl |
|- ( ph -> ( 0 ... N ) = ( ( 0 ... ( j - 1 ) ) u. ( ( ( j - 1 ) + 1 ) ... N ) ) ) |
78 |
20
|
zcnd |
|- ( ph -> j e. CC ) |
79 |
78 64
|
npcand |
|- ( ph -> ( ( j - 1 ) + 1 ) = j ) |
80 |
79
|
oveq1d |
|- ( ph -> ( ( ( j - 1 ) + 1 ) ... N ) = ( j ... N ) ) |
81 |
80
|
uneq2d |
|- ( ph -> ( ( 0 ... ( j - 1 ) ) u. ( ( ( j - 1 ) + 1 ) ... N ) ) = ( ( 0 ... ( j - 1 ) ) u. ( j ... N ) ) ) |
82 |
77 81
|
eqtrd |
|- ( ph -> ( 0 ... N ) = ( ( 0 ... ( j - 1 ) ) u. ( j ... N ) ) ) |
83 |
7
|
rpcnd |
|- ( ph -> E e. CC ) |
84 |
83
|
adantr |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> E e. CC ) |
85 |
17
|
recnd |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> ( ( X ` i ) ` t ) e. CC ) |
86 |
84 85
|
mulcld |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> ( E x. ( ( X ` i ) ` t ) ) e. CC ) |
87 |
61 82 13 86
|
fsumsplit |
|- ( ph -> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) = ( sum_ i e. ( 0 ... ( j - 1 ) ) ( E x. ( ( X ` i ) ` t ) ) + sum_ i e. ( j ... N ) ( E x. ( ( X ` i ) ` t ) ) ) ) |
88 |
|
fzfid |
|- ( ph -> ( j ... N ) e. Fin ) |
89 |
14
|
adantr |
|- ( ( ph /\ i e. ( j ... N ) ) -> E e. RR ) |
90 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
91 |
|
0red |
|- ( ph -> 0 e. RR ) |
92 |
|
0le1 |
|- 0 <_ 1 |
93 |
92
|
a1i |
|- ( ph -> 0 <_ 1 ) |
94 |
|
elfzuz |
|- ( j e. ( 1 ... N ) -> j e. ( ZZ>= ` 1 ) ) |
95 |
3 94
|
syl |
|- ( ph -> j e. ( ZZ>= ` 1 ) ) |
96 |
|
eluz2 |
|- ( j e. ( ZZ>= ` 1 ) <-> ( 1 e. ZZ /\ j e. ZZ /\ 1 <_ j ) ) |
97 |
95 96
|
sylib |
|- ( ph -> ( 1 e. ZZ /\ j e. ZZ /\ 1 <_ j ) ) |
98 |
97
|
simp3d |
|- ( ph -> 1 <_ j ) |
99 |
91 25 21 93 98
|
letrd |
|- ( ph -> 0 <_ j ) |
100 |
|
eluz2 |
|- ( j e. ( ZZ>= ` 0 ) <-> ( 0 e. ZZ /\ j e. ZZ /\ 0 <_ j ) ) |
101 |
90 20 99 100
|
syl3anbrc |
|- ( ph -> j e. ( ZZ>= ` 0 ) ) |
102 |
|
fzss1 |
|- ( j e. ( ZZ>= ` 0 ) -> ( j ... N ) C_ ( 0 ... N ) ) |
103 |
101 102
|
syl |
|- ( ph -> ( j ... N ) C_ ( 0 ... N ) ) |
104 |
103
|
sselda |
|- ( ( ph /\ i e. ( j ... N ) ) -> i e. ( 0 ... N ) ) |
105 |
104 4
|
syldan |
|- ( ( ph /\ i e. ( j ... N ) ) -> ( X ` i ) : T --> RR ) |
106 |
2
|
adantr |
|- ( ( ph /\ i e. ( j ... N ) ) -> t e. T ) |
107 |
105 106
|
ffvelrnd |
|- ( ( ph /\ i e. ( j ... N ) ) -> ( ( X ` i ) ` t ) e. RR ) |
108 |
89 107
|
remulcld |
|- ( ( ph /\ i e. ( j ... N ) ) -> ( E x. ( ( X ` i ) ` t ) ) e. RR ) |
109 |
88 108
|
fsumrecl |
|- ( ph -> sum_ i e. ( j ... N ) ( E x. ( ( X ` i ) ` t ) ) e. RR ) |
110 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` j ) -> N e. ( j ... N ) ) |
111 |
|
ne0i |
|- ( N e. ( j ... N ) -> ( j ... N ) =/= (/) ) |
112 |
3 46 110 111
|
4syl |
|- ( ph -> ( j ... N ) =/= (/) ) |
113 |
1
|
adantr |
|- ( ( ph /\ i e. ( j ... N ) ) -> N e. NN ) |
114 |
89 113
|
nndivred |
|- ( ( ph /\ i e. ( j ... N ) ) -> ( E / N ) e. RR ) |
115 |
89 114
|
remulcld |
|- ( ( ph /\ i e. ( j ... N ) ) -> ( E x. ( E / N ) ) e. RR ) |
116 |
7
|
rpgt0d |
|- ( ph -> 0 < E ) |
117 |
116
|
adantr |
|- ( ( ph /\ i e. ( j ... N ) ) -> 0 < E ) |
118 |
|
ltmul2 |
|- ( ( ( ( X ` i ) ` t ) e. RR /\ ( E / N ) e. RR /\ ( E e. RR /\ 0 < E ) ) -> ( ( ( X ` i ) ` t ) < ( E / N ) <-> ( E x. ( ( X ` i ) ` t ) ) < ( E x. ( E / N ) ) ) ) |
119 |
107 114 89 117 118
|
syl112anc |
|- ( ( ph /\ i e. ( j ... N ) ) -> ( ( ( X ` i ) ` t ) < ( E / N ) <-> ( E x. ( ( X ` i ) ` t ) ) < ( E x. ( E / N ) ) ) ) |
120 |
6 119
|
mpbid |
|- ( ( ph /\ i e. ( j ... N ) ) -> ( E x. ( ( X ` i ) ` t ) ) < ( E x. ( E / N ) ) ) |
121 |
88 112 108 115 120
|
fsumlt |
|- ( ph -> sum_ i e. ( j ... N ) ( E x. ( ( X ` i ) ` t ) ) < sum_ i e. ( j ... N ) ( E x. ( E / N ) ) ) |
122 |
1
|
nnne0d |
|- ( ph -> N =/= 0 ) |
123 |
83 63 122
|
divcld |
|- ( ph -> ( E / N ) e. CC ) |
124 |
83 123
|
mulcld |
|- ( ph -> ( E x. ( E / N ) ) e. CC ) |
125 |
|
fsumconst |
|- ( ( ( j ... N ) e. Fin /\ ( E x. ( E / N ) ) e. CC ) -> sum_ i e. ( j ... N ) ( E x. ( E / N ) ) = ( ( # ` ( j ... N ) ) x. ( E x. ( E / N ) ) ) ) |
126 |
88 124 125
|
syl2anc |
|- ( ph -> sum_ i e. ( j ... N ) ( E x. ( E / N ) ) = ( ( # ` ( j ... N ) ) x. ( E x. ( E / N ) ) ) ) |
127 |
|
hashfz |
|- ( N e. ( ZZ>= ` j ) -> ( # ` ( j ... N ) ) = ( ( N - j ) + 1 ) ) |
128 |
3 46 127
|
3syl |
|- ( ph -> ( # ` ( j ... N ) ) = ( ( N - j ) + 1 ) ) |
129 |
128
|
oveq1d |
|- ( ph -> ( ( # ` ( j ... N ) ) x. ( E x. ( E / N ) ) ) = ( ( ( N - j ) + 1 ) x. ( E x. ( E / N ) ) ) ) |
130 |
126 129
|
eqtrd |
|- ( ph -> sum_ i e. ( j ... N ) ( E x. ( E / N ) ) = ( ( ( N - j ) + 1 ) x. ( E x. ( E / N ) ) ) ) |
131 |
121 130
|
breqtrd |
|- ( ph -> sum_ i e. ( j ... N ) ( E x. ( ( X ` i ) ` t ) ) < ( ( ( N - j ) + 1 ) x. ( E x. ( E / N ) ) ) ) |
132 |
109 29 57 131
|
ltadd2dd |
|- ( ph -> ( sum_ i e. ( 0 ... ( j - 1 ) ) ( E x. ( ( X ` i ) ` t ) ) + sum_ i e. ( j ... N ) ( E x. ( ( X ` i ) ` t ) ) ) < ( sum_ i e. ( 0 ... ( j - 1 ) ) ( E x. ( ( X ` i ) ` t ) ) + ( ( ( N - j ) + 1 ) x. ( E x. ( E / N ) ) ) ) ) |
133 |
87 132
|
eqbrtrd |
|- ( ph -> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) < ( sum_ i e. ( 0 ... ( j - 1 ) ) ( E x. ( ( X ` i ) ` t ) ) + ( ( ( N - j ) + 1 ) x. ( E x. ( E / N ) ) ) ) ) |
134 |
54 5
|
syldan |
|- ( ( ph /\ i e. ( 0 ... ( j - 1 ) ) ) -> ( ( X ` i ) ` t ) <_ 1 ) |
135 |
|
1red |
|- ( ( ph /\ i e. ( 0 ... ( j - 1 ) ) ) -> 1 e. RR ) |
136 |
116
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( j - 1 ) ) ) -> 0 < E ) |
137 |
|
lemul2 |
|- ( ( ( ( X ` i ) ` t ) e. RR /\ 1 e. RR /\ ( E e. RR /\ 0 < E ) ) -> ( ( ( X ` i ) ` t ) <_ 1 <-> ( E x. ( ( X ` i ) ` t ) ) <_ ( E x. 1 ) ) ) |
138 |
55 135 39 136 137
|
syl112anc |
|- ( ( ph /\ i e. ( 0 ... ( j - 1 ) ) ) -> ( ( ( X ` i ) ` t ) <_ 1 <-> ( E x. ( ( X ` i ) ` t ) ) <_ ( E x. 1 ) ) ) |
139 |
134 138
|
mpbid |
|- ( ( ph /\ i e. ( 0 ... ( j - 1 ) ) ) -> ( E x. ( ( X ` i ) ` t ) ) <_ ( E x. 1 ) ) |
140 |
83
|
mulid1d |
|- ( ph -> ( E x. 1 ) = E ) |
141 |
140
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( j - 1 ) ) ) -> ( E x. 1 ) = E ) |
142 |
139 141
|
breqtrd |
|- ( ( ph /\ i e. ( 0 ... ( j - 1 ) ) ) -> ( E x. ( ( X ` i ) ` t ) ) <_ E ) |
143 |
38 56 39 142
|
fsumle |
|- ( ph -> sum_ i e. ( 0 ... ( j - 1 ) ) ( E x. ( ( X ` i ) ` t ) ) <_ sum_ i e. ( 0 ... ( j - 1 ) ) E ) |
144 |
|
fsumconst |
|- ( ( ( 0 ... ( j - 1 ) ) e. Fin /\ E e. CC ) -> sum_ i e. ( 0 ... ( j - 1 ) ) E = ( ( # ` ( 0 ... ( j - 1 ) ) ) x. E ) ) |
145 |
38 83 144
|
syl2anc |
|- ( ph -> sum_ i e. ( 0 ... ( j - 1 ) ) E = ( ( # ` ( 0 ... ( j - 1 ) ) ) x. E ) ) |
146 |
|
0z |
|- 0 e. ZZ |
147 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
148 |
147
|
fveq2i |
|- ( ZZ>= ` 1 ) = ( ZZ>= ` ( 0 + 1 ) ) |
149 |
95 148
|
eleqtrdi |
|- ( ph -> j e. ( ZZ>= ` ( 0 + 1 ) ) ) |
150 |
|
eluzp1m1 |
|- ( ( 0 e. ZZ /\ j e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( j - 1 ) e. ( ZZ>= ` 0 ) ) |
151 |
146 149 150
|
sylancr |
|- ( ph -> ( j - 1 ) e. ( ZZ>= ` 0 ) ) |
152 |
|
hashfz |
|- ( ( j - 1 ) e. ( ZZ>= ` 0 ) -> ( # ` ( 0 ... ( j - 1 ) ) ) = ( ( ( j - 1 ) - 0 ) + 1 ) ) |
153 |
151 152
|
syl |
|- ( ph -> ( # ` ( 0 ... ( j - 1 ) ) ) = ( ( ( j - 1 ) - 0 ) + 1 ) ) |
154 |
78 64
|
subcld |
|- ( ph -> ( j - 1 ) e. CC ) |
155 |
154
|
subid1d |
|- ( ph -> ( ( j - 1 ) - 0 ) = ( j - 1 ) ) |
156 |
155
|
oveq1d |
|- ( ph -> ( ( ( j - 1 ) - 0 ) + 1 ) = ( ( j - 1 ) + 1 ) ) |
157 |
153 156 79
|
3eqtrd |
|- ( ph -> ( # ` ( 0 ... ( j - 1 ) ) ) = j ) |
158 |
157
|
oveq1d |
|- ( ph -> ( ( # ` ( 0 ... ( j - 1 ) ) ) x. E ) = ( j x. E ) ) |
159 |
78 83
|
mulcomd |
|- ( ph -> ( j x. E ) = ( E x. j ) ) |
160 |
145 158 159
|
3eqtrd |
|- ( ph -> sum_ i e. ( 0 ... ( j - 1 ) ) E = ( E x. j ) ) |
161 |
143 160
|
breqtrd |
|- ( ph -> sum_ i e. ( 0 ... ( j - 1 ) ) ( E x. ( ( X ` i ) ` t ) ) <_ ( E x. j ) ) |
162 |
57 22 29 161
|
leadd1dd |
|- ( ph -> ( sum_ i e. ( 0 ... ( j - 1 ) ) ( E x. ( ( X ` i ) ` t ) ) + ( ( ( N - j ) + 1 ) x. ( E x. ( E / N ) ) ) ) <_ ( ( E x. j ) + ( ( ( N - j ) + 1 ) x. ( E x. ( E / N ) ) ) ) ) |
163 |
19 58 30 133 162
|
ltletrd |
|- ( ph -> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) < ( ( E x. j ) + ( ( ( N - j ) + 1 ) x. ( E x. ( E / N ) ) ) ) ) |
164 |
14 14
|
remulcld |
|- ( ph -> ( E x. E ) e. RR ) |
165 |
22 164
|
readdcld |
|- ( ph -> ( ( E x. j ) + ( E x. E ) ) e. RR ) |
166 |
63 78
|
subcld |
|- ( ph -> ( N - j ) e. CC ) |
167 |
166 64
|
addcld |
|- ( ph -> ( ( N - j ) + 1 ) e. CC ) |
168 |
83 167 123
|
mul12d |
|- ( ph -> ( E x. ( ( ( N - j ) + 1 ) x. ( E / N ) ) ) = ( ( ( N - j ) + 1 ) x. ( E x. ( E / N ) ) ) ) |
169 |
168
|
oveq2d |
|- ( ph -> ( ( E x. j ) + ( E x. ( ( ( N - j ) + 1 ) x. ( E / N ) ) ) ) = ( ( E x. j ) + ( ( ( N - j ) + 1 ) x. ( E x. ( E / N ) ) ) ) ) |
170 |
26 27
|
remulcld |
|- ( ph -> ( ( ( N - j ) + 1 ) x. ( E / N ) ) e. RR ) |
171 |
14 170
|
remulcld |
|- ( ph -> ( E x. ( ( ( N - j ) + 1 ) x. ( E / N ) ) ) e. RR ) |
172 |
167 83 63 122
|
div12d |
|- ( ph -> ( ( ( N - j ) + 1 ) x. ( E / N ) ) = ( E x. ( ( ( N - j ) + 1 ) / N ) ) ) |
173 |
25 21
|
resubcld |
|- ( ph -> ( 1 - j ) e. RR ) |
174 |
|
elfzle1 |
|- ( j e. ( 1 ... N ) -> 1 <_ j ) |
175 |
3 174
|
syl |
|- ( ph -> 1 <_ j ) |
176 |
25 21
|
suble0d |
|- ( ph -> ( ( 1 - j ) <_ 0 <-> 1 <_ j ) ) |
177 |
175 176
|
mpbird |
|- ( ph -> ( 1 - j ) <_ 0 ) |
178 |
173 91 23 177
|
leadd2dd |
|- ( ph -> ( N + ( 1 - j ) ) <_ ( N + 0 ) ) |
179 |
63 64 78
|
addsub12d |
|- ( ph -> ( N + ( 1 - j ) ) = ( 1 + ( N - j ) ) ) |
180 |
64 166
|
addcomd |
|- ( ph -> ( 1 + ( N - j ) ) = ( ( N - j ) + 1 ) ) |
181 |
179 180
|
eqtrd |
|- ( ph -> ( N + ( 1 - j ) ) = ( ( N - j ) + 1 ) ) |
182 |
63
|
addid1d |
|- ( ph -> ( N + 0 ) = N ) |
183 |
178 181 182
|
3brtr3d |
|- ( ph -> ( ( N - j ) + 1 ) <_ N ) |
184 |
1
|
nngt0d |
|- ( ph -> 0 < N ) |
185 |
|
lediv1 |
|- ( ( ( ( N - j ) + 1 ) e. RR /\ N e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( ( N - j ) + 1 ) <_ N <-> ( ( ( N - j ) + 1 ) / N ) <_ ( N / N ) ) ) |
186 |
26 23 23 184 185
|
syl112anc |
|- ( ph -> ( ( ( N - j ) + 1 ) <_ N <-> ( ( ( N - j ) + 1 ) / N ) <_ ( N / N ) ) ) |
187 |
183 186
|
mpbid |
|- ( ph -> ( ( ( N - j ) + 1 ) / N ) <_ ( N / N ) ) |
188 |
63 122
|
dividd |
|- ( ph -> ( N / N ) = 1 ) |
189 |
187 188
|
breqtrd |
|- ( ph -> ( ( ( N - j ) + 1 ) / N ) <_ 1 ) |
190 |
26 1
|
nndivred |
|- ( ph -> ( ( ( N - j ) + 1 ) / N ) e. RR ) |
191 |
190 25 7
|
lemul2d |
|- ( ph -> ( ( ( ( N - j ) + 1 ) / N ) <_ 1 <-> ( E x. ( ( ( N - j ) + 1 ) / N ) ) <_ ( E x. 1 ) ) ) |
192 |
189 191
|
mpbid |
|- ( ph -> ( E x. ( ( ( N - j ) + 1 ) / N ) ) <_ ( E x. 1 ) ) |
193 |
192 140
|
breqtrd |
|- ( ph -> ( E x. ( ( ( N - j ) + 1 ) / N ) ) <_ E ) |
194 |
172 193
|
eqbrtrd |
|- ( ph -> ( ( ( N - j ) + 1 ) x. ( E / N ) ) <_ E ) |
195 |
170 14 7
|
lemul2d |
|- ( ph -> ( ( ( ( N - j ) + 1 ) x. ( E / N ) ) <_ E <-> ( E x. ( ( ( N - j ) + 1 ) x. ( E / N ) ) ) <_ ( E x. E ) ) ) |
196 |
194 195
|
mpbid |
|- ( ph -> ( E x. ( ( ( N - j ) + 1 ) x. ( E / N ) ) ) <_ ( E x. E ) ) |
197 |
171 164 22 196
|
leadd2dd |
|- ( ph -> ( ( E x. j ) + ( E x. ( ( ( N - j ) + 1 ) x. ( E / N ) ) ) ) <_ ( ( E x. j ) + ( E x. E ) ) ) |
198 |
169 197
|
eqbrtrrd |
|- ( ph -> ( ( E x. j ) + ( ( ( N - j ) + 1 ) x. ( E x. ( E / N ) ) ) ) <_ ( ( E x. j ) + ( E x. E ) ) ) |
199 |
83 78
|
mulcomd |
|- ( ph -> ( E x. j ) = ( j x. E ) ) |
200 |
199
|
oveq1d |
|- ( ph -> ( ( E x. j ) + ( E x. E ) ) = ( ( j x. E ) + ( E x. E ) ) ) |
201 |
78 83 83
|
adddird |
|- ( ph -> ( ( j + E ) x. E ) = ( ( j x. E ) + ( E x. E ) ) ) |
202 |
200 201
|
eqtr4d |
|- ( ph -> ( ( E x. j ) + ( E x. E ) ) = ( ( j + E ) x. E ) ) |
203 |
21 14
|
readdcld |
|- ( ph -> ( j + E ) e. RR ) |
204 |
14 35 21 8
|
ltadd2dd |
|- ( ph -> ( j + E ) < ( j + ( 1 / 3 ) ) ) |
205 |
203 36 7 204
|
ltmul1dd |
|- ( ph -> ( ( j + E ) x. E ) < ( ( j + ( 1 / 3 ) ) x. E ) ) |
206 |
202 205
|
eqbrtrd |
|- ( ph -> ( ( E x. j ) + ( E x. E ) ) < ( ( j + ( 1 / 3 ) ) x. E ) ) |
207 |
30 165 37 198 206
|
lelttrd |
|- ( ph -> ( ( E x. j ) + ( ( ( N - j ) + 1 ) x. ( E x. ( E / N ) ) ) ) < ( ( j + ( 1 / 3 ) ) x. E ) ) |
208 |
19 30 37 163 207
|
lttrd |
|- ( ph -> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) < ( ( j + ( 1 / 3 ) ) x. E ) ) |
209 |
12 208
|
eqbrtrd |
|- ( ph -> ( ( t e. T |-> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) < ( ( j + ( 1 / 3 ) ) x. E ) ) |