Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem13.1 |
|- ( ph -> E e. RR+ ) |
2 |
|
stoweidlem13.2 |
|- ( ph -> X e. RR ) |
3 |
|
stoweidlem13.3 |
|- ( ph -> Y e. RR ) |
4 |
|
stoweidlem13.4 |
|- ( ph -> j e. RR ) |
5 |
|
stoweidlem13.5 |
|- ( ph -> ( ( j - ( 4 / 3 ) ) x. E ) < X ) |
6 |
|
stoweidlem13.6 |
|- ( ph -> X <_ ( ( j - ( 1 / 3 ) ) x. E ) ) |
7 |
|
stoweidlem13.7 |
|- ( ph -> ( ( j - ( 4 / 3 ) ) x. E ) < Y ) |
8 |
|
stoweidlem13.8 |
|- ( ph -> Y < ( ( j + ( 1 / 3 ) ) x. E ) ) |
9 |
3 2
|
resubcld |
|- ( ph -> ( Y - X ) e. RR ) |
10 |
|
2re |
|- 2 e. RR |
11 |
1
|
rpred |
|- ( ph -> E e. RR ) |
12 |
|
remulcl |
|- ( ( 2 e. RR /\ E e. RR ) -> ( 2 x. E ) e. RR ) |
13 |
10 11 12
|
sylancr |
|- ( ph -> ( 2 x. E ) e. RR ) |
14 |
3
|
recnd |
|- ( ph -> Y e. CC ) |
15 |
2
|
recnd |
|- ( ph -> X e. CC ) |
16 |
14 15
|
negsubdi2d |
|- ( ph -> -u ( Y - X ) = ( X - Y ) ) |
17 |
2 3
|
resubcld |
|- ( ph -> ( X - Y ) e. RR ) |
18 |
|
1red |
|- ( ph -> 1 e. RR ) |
19 |
18 11
|
remulcld |
|- ( ph -> ( 1 x. E ) e. RR ) |
20 |
|
3re |
|- 3 e. RR |
21 |
|
3ne0 |
|- 3 =/= 0 |
22 |
20 21
|
rereccli |
|- ( 1 / 3 ) e. RR |
23 |
22
|
a1i |
|- ( ph -> ( 1 / 3 ) e. RR ) |
24 |
4 23
|
resubcld |
|- ( ph -> ( j - ( 1 / 3 ) ) e. RR ) |
25 |
24 11
|
remulcld |
|- ( ph -> ( ( j - ( 1 / 3 ) ) x. E ) e. RR ) |
26 |
25 3
|
resubcld |
|- ( ph -> ( ( ( j - ( 1 / 3 ) ) x. E ) - Y ) e. RR ) |
27 |
|
4re |
|- 4 e. RR |
28 |
27 20 21
|
3pm3.2i |
|- ( 4 e. RR /\ 3 e. RR /\ 3 =/= 0 ) |
29 |
|
redivcl |
|- ( ( 4 e. RR /\ 3 e. RR /\ 3 =/= 0 ) -> ( 4 / 3 ) e. RR ) |
30 |
28 29
|
mp1i |
|- ( ph -> ( 4 / 3 ) e. RR ) |
31 |
4 30
|
resubcld |
|- ( ph -> ( j - ( 4 / 3 ) ) e. RR ) |
32 |
31 11
|
remulcld |
|- ( ph -> ( ( j - ( 4 / 3 ) ) x. E ) e. RR ) |
33 |
25 32
|
resubcld |
|- ( ph -> ( ( ( j - ( 1 / 3 ) ) x. E ) - ( ( j - ( 4 / 3 ) ) x. E ) ) e. RR ) |
34 |
2 25 3 6
|
lesub1dd |
|- ( ph -> ( X - Y ) <_ ( ( ( j - ( 1 / 3 ) ) x. E ) - Y ) ) |
35 |
32 3 25 7
|
ltsub2dd |
|- ( ph -> ( ( ( j - ( 1 / 3 ) ) x. E ) - Y ) < ( ( ( j - ( 1 / 3 ) ) x. E ) - ( ( j - ( 4 / 3 ) ) x. E ) ) ) |
36 |
17 26 33 34 35
|
lelttrd |
|- ( ph -> ( X - Y ) < ( ( ( j - ( 1 / 3 ) ) x. E ) - ( ( j - ( 4 / 3 ) ) x. E ) ) ) |
37 |
4
|
recnd |
|- ( ph -> j e. CC ) |
38 |
23
|
recnd |
|- ( ph -> ( 1 / 3 ) e. CC ) |
39 |
37 38
|
subcld |
|- ( ph -> ( j - ( 1 / 3 ) ) e. CC ) |
40 |
30
|
recnd |
|- ( ph -> ( 4 / 3 ) e. CC ) |
41 |
37 40
|
subcld |
|- ( ph -> ( j - ( 4 / 3 ) ) e. CC ) |
42 |
11
|
recnd |
|- ( ph -> E e. CC ) |
43 |
39 41 42
|
subdird |
|- ( ph -> ( ( ( j - ( 1 / 3 ) ) - ( j - ( 4 / 3 ) ) ) x. E ) = ( ( ( j - ( 1 / 3 ) ) x. E ) - ( ( j - ( 4 / 3 ) ) x. E ) ) ) |
44 |
37 38 37 40
|
sub4d |
|- ( ph -> ( ( j - ( 1 / 3 ) ) - ( j - ( 4 / 3 ) ) ) = ( ( j - j ) - ( ( 1 / 3 ) - ( 4 / 3 ) ) ) ) |
45 |
37 37
|
subcld |
|- ( ph -> ( j - j ) e. CC ) |
46 |
45 38 40
|
subsub2d |
|- ( ph -> ( ( j - j ) - ( ( 1 / 3 ) - ( 4 / 3 ) ) ) = ( ( j - j ) + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) ) |
47 |
44 46
|
eqtrd |
|- ( ph -> ( ( j - ( 1 / 3 ) ) - ( j - ( 4 / 3 ) ) ) = ( ( j - j ) + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) ) |
48 |
47
|
oveq1d |
|- ( ph -> ( ( ( j - ( 1 / 3 ) ) - ( j - ( 4 / 3 ) ) ) x. E ) = ( ( ( j - j ) + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) x. E ) ) |
49 |
43 48
|
eqtr3d |
|- ( ph -> ( ( ( j - ( 1 / 3 ) ) x. E ) - ( ( j - ( 4 / 3 ) ) x. E ) ) = ( ( ( j - j ) + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) x. E ) ) |
50 |
36 49
|
breqtrd |
|- ( ph -> ( X - Y ) < ( ( ( j - j ) + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) x. E ) ) |
51 |
37
|
subidd |
|- ( ph -> ( j - j ) = 0 ) |
52 |
51
|
oveq1d |
|- ( ph -> ( ( j - j ) + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) = ( 0 + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) ) |
53 |
|
4cn |
|- 4 e. CC |
54 |
|
3cn |
|- 3 e. CC |
55 |
53 54 21
|
divcli |
|- ( 4 / 3 ) e. CC |
56 |
|
ax-1cn |
|- 1 e. CC |
57 |
56 54 21
|
divcli |
|- ( 1 / 3 ) e. CC |
58 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
59 |
58
|
oveq2i |
|- ( ( 1 / 3 ) + ( 1 / 1 ) ) = ( ( 1 / 3 ) + 1 ) |
60 |
|
ax-1ne0 |
|- 1 =/= 0 |
61 |
56 54 56 56 21 60
|
divadddivi |
|- ( ( 1 / 3 ) + ( 1 / 1 ) ) = ( ( ( 1 x. 1 ) + ( 1 x. 3 ) ) / ( 3 x. 1 ) ) |
62 |
59 61
|
eqtr3i |
|- ( ( 1 / 3 ) + 1 ) = ( ( ( 1 x. 1 ) + ( 1 x. 3 ) ) / ( 3 x. 1 ) ) |
63 |
54 56
|
addcomi |
|- ( 3 + 1 ) = ( 1 + 3 ) |
64 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
65 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
66 |
54
|
mulid2i |
|- ( 1 x. 3 ) = 3 |
67 |
65 66
|
oveq12i |
|- ( ( 1 x. 1 ) + ( 1 x. 3 ) ) = ( 1 + 3 ) |
68 |
63 64 67
|
3eqtr4ri |
|- ( ( 1 x. 1 ) + ( 1 x. 3 ) ) = 4 |
69 |
68
|
oveq1i |
|- ( ( ( 1 x. 1 ) + ( 1 x. 3 ) ) / ( 3 x. 1 ) ) = ( 4 / ( 3 x. 1 ) ) |
70 |
|
3t1e3 |
|- ( 3 x. 1 ) = 3 |
71 |
70
|
oveq2i |
|- ( 4 / ( 3 x. 1 ) ) = ( 4 / 3 ) |
72 |
62 69 71
|
3eqtri |
|- ( ( 1 / 3 ) + 1 ) = ( 4 / 3 ) |
73 |
55 57 56 72
|
subaddrii |
|- ( ( 4 / 3 ) - ( 1 / 3 ) ) = 1 |
74 |
73
|
oveq2i |
|- ( 0 + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) = ( 0 + 1 ) |
75 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
76 |
74 75
|
eqtr4i |
|- ( 0 + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) = 1 |
77 |
52 76
|
eqtrdi |
|- ( ph -> ( ( j - j ) + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) = 1 ) |
78 |
77
|
oveq1d |
|- ( ph -> ( ( ( j - j ) + ( ( 4 / 3 ) - ( 1 / 3 ) ) ) x. E ) = ( 1 x. E ) ) |
79 |
50 78
|
breqtrd |
|- ( ph -> ( X - Y ) < ( 1 x. E ) ) |
80 |
|
1lt2 |
|- 1 < 2 |
81 |
10
|
a1i |
|- ( ph -> 2 e. RR ) |
82 |
18 81 1
|
ltmul1d |
|- ( ph -> ( 1 < 2 <-> ( 1 x. E ) < ( 2 x. E ) ) ) |
83 |
80 82
|
mpbii |
|- ( ph -> ( 1 x. E ) < ( 2 x. E ) ) |
84 |
17 19 13 79 83
|
lttrd |
|- ( ph -> ( X - Y ) < ( 2 x. E ) ) |
85 |
16 84
|
eqbrtrd |
|- ( ph -> -u ( Y - X ) < ( 2 x. E ) ) |
86 |
9 13 85
|
ltnegcon1d |
|- ( ph -> -u ( 2 x. E ) < ( Y - X ) ) |
87 |
|
5re |
|- 5 e. RR |
88 |
87
|
a1i |
|- ( ph -> 5 e. RR ) |
89 |
20
|
a1i |
|- ( ph -> 3 e. RR ) |
90 |
21
|
a1i |
|- ( ph -> 3 =/= 0 ) |
91 |
88 89 90
|
redivcld |
|- ( ph -> ( 5 / 3 ) e. RR ) |
92 |
91 11
|
remulcld |
|- ( ph -> ( ( 5 / 3 ) x. E ) e. RR ) |
93 |
2
|
renegcld |
|- ( ph -> -u X e. RR ) |
94 |
4 23
|
readdcld |
|- ( ph -> ( j + ( 1 / 3 ) ) e. RR ) |
95 |
94 11
|
remulcld |
|- ( ph -> ( ( j + ( 1 / 3 ) ) x. E ) e. RR ) |
96 |
32
|
renegcld |
|- ( ph -> -u ( ( j - ( 4 / 3 ) ) x. E ) e. RR ) |
97 |
32 2
|
ltnegd |
|- ( ph -> ( ( ( j - ( 4 / 3 ) ) x. E ) < X <-> -u X < -u ( ( j - ( 4 / 3 ) ) x. E ) ) ) |
98 |
5 97
|
mpbid |
|- ( ph -> -u X < -u ( ( j - ( 4 / 3 ) ) x. E ) ) |
99 |
3 93 95 96 8 98
|
lt2addd |
|- ( ph -> ( Y + -u X ) < ( ( ( j + ( 1 / 3 ) ) x. E ) + -u ( ( j - ( 4 / 3 ) ) x. E ) ) ) |
100 |
14 15
|
negsubd |
|- ( ph -> ( Y + -u X ) = ( Y - X ) ) |
101 |
37 38 42
|
adddird |
|- ( ph -> ( ( j + ( 1 / 3 ) ) x. E ) = ( ( j x. E ) + ( ( 1 / 3 ) x. E ) ) ) |
102 |
37 40
|
negsubd |
|- ( ph -> ( j + -u ( 4 / 3 ) ) = ( j - ( 4 / 3 ) ) ) |
103 |
102
|
eqcomd |
|- ( ph -> ( j - ( 4 / 3 ) ) = ( j + -u ( 4 / 3 ) ) ) |
104 |
103
|
oveq1d |
|- ( ph -> ( ( j - ( 4 / 3 ) ) x. E ) = ( ( j + -u ( 4 / 3 ) ) x. E ) ) |
105 |
40
|
negcld |
|- ( ph -> -u ( 4 / 3 ) e. CC ) |
106 |
37 105 42
|
adddird |
|- ( ph -> ( ( j + -u ( 4 / 3 ) ) x. E ) = ( ( j x. E ) + ( -u ( 4 / 3 ) x. E ) ) ) |
107 |
40 42
|
mulneg1d |
|- ( ph -> ( -u ( 4 / 3 ) x. E ) = -u ( ( 4 / 3 ) x. E ) ) |
108 |
107
|
oveq2d |
|- ( ph -> ( ( j x. E ) + ( -u ( 4 / 3 ) x. E ) ) = ( ( j x. E ) + -u ( ( 4 / 3 ) x. E ) ) ) |
109 |
104 106 108
|
3eqtrd |
|- ( ph -> ( ( j - ( 4 / 3 ) ) x. E ) = ( ( j x. E ) + -u ( ( 4 / 3 ) x. E ) ) ) |
110 |
109
|
negeqd |
|- ( ph -> -u ( ( j - ( 4 / 3 ) ) x. E ) = -u ( ( j x. E ) + -u ( ( 4 / 3 ) x. E ) ) ) |
111 |
37 42
|
mulcld |
|- ( ph -> ( j x. E ) e. CC ) |
112 |
40 42
|
mulcld |
|- ( ph -> ( ( 4 / 3 ) x. E ) e. CC ) |
113 |
112
|
negcld |
|- ( ph -> -u ( ( 4 / 3 ) x. E ) e. CC ) |
114 |
111 113
|
negdid |
|- ( ph -> -u ( ( j x. E ) + -u ( ( 4 / 3 ) x. E ) ) = ( -u ( j x. E ) + -u -u ( ( 4 / 3 ) x. E ) ) ) |
115 |
112
|
negnegd |
|- ( ph -> -u -u ( ( 4 / 3 ) x. E ) = ( ( 4 / 3 ) x. E ) ) |
116 |
115
|
oveq2d |
|- ( ph -> ( -u ( j x. E ) + -u -u ( ( 4 / 3 ) x. E ) ) = ( -u ( j x. E ) + ( ( 4 / 3 ) x. E ) ) ) |
117 |
110 114 116
|
3eqtrd |
|- ( ph -> -u ( ( j - ( 4 / 3 ) ) x. E ) = ( -u ( j x. E ) + ( ( 4 / 3 ) x. E ) ) ) |
118 |
101 117
|
oveq12d |
|- ( ph -> ( ( ( j + ( 1 / 3 ) ) x. E ) + -u ( ( j - ( 4 / 3 ) ) x. E ) ) = ( ( ( j x. E ) + ( ( 1 / 3 ) x. E ) ) + ( -u ( j x. E ) + ( ( 4 / 3 ) x. E ) ) ) ) |
119 |
38 42
|
mulcld |
|- ( ph -> ( ( 1 / 3 ) x. E ) e. CC ) |
120 |
111
|
negcld |
|- ( ph -> -u ( j x. E ) e. CC ) |
121 |
111 119 120 112
|
add4d |
|- ( ph -> ( ( ( j x. E ) + ( ( 1 / 3 ) x. E ) ) + ( -u ( j x. E ) + ( ( 4 / 3 ) x. E ) ) ) = ( ( ( j x. E ) + -u ( j x. E ) ) + ( ( ( 1 / 3 ) x. E ) + ( ( 4 / 3 ) x. E ) ) ) ) |
122 |
111
|
negidd |
|- ( ph -> ( ( j x. E ) + -u ( j x. E ) ) = 0 ) |
123 |
122
|
oveq1d |
|- ( ph -> ( ( ( j x. E ) + -u ( j x. E ) ) + ( ( ( 1 / 3 ) x. E ) + ( ( 4 / 3 ) x. E ) ) ) = ( 0 + ( ( ( 1 / 3 ) x. E ) + ( ( 4 / 3 ) x. E ) ) ) ) |
124 |
119 112
|
addcld |
|- ( ph -> ( ( ( 1 / 3 ) x. E ) + ( ( 4 / 3 ) x. E ) ) e. CC ) |
125 |
124
|
addid2d |
|- ( ph -> ( 0 + ( ( ( 1 / 3 ) x. E ) + ( ( 4 / 3 ) x. E ) ) ) = ( ( ( 1 / 3 ) x. E ) + ( ( 4 / 3 ) x. E ) ) ) |
126 |
121 123 125
|
3eqtrd |
|- ( ph -> ( ( ( j x. E ) + ( ( 1 / 3 ) x. E ) ) + ( -u ( j x. E ) + ( ( 4 / 3 ) x. E ) ) ) = ( ( ( 1 / 3 ) x. E ) + ( ( 4 / 3 ) x. E ) ) ) |
127 |
38 40 42
|
adddird |
|- ( ph -> ( ( ( 1 / 3 ) + ( 4 / 3 ) ) x. E ) = ( ( ( 1 / 3 ) x. E ) + ( ( 4 / 3 ) x. E ) ) ) |
128 |
89
|
recnd |
|- ( ph -> 3 e. CC ) |
129 |
38 40
|
addcld |
|- ( ph -> ( ( 1 / 3 ) + ( 4 / 3 ) ) e. CC ) |
130 |
128 38 40
|
adddid |
|- ( ph -> ( 3 x. ( ( 1 / 3 ) + ( 4 / 3 ) ) ) = ( ( 3 x. ( 1 / 3 ) ) + ( 3 x. ( 4 / 3 ) ) ) ) |
131 |
56 53
|
addcomi |
|- ( 1 + 4 ) = ( 4 + 1 ) |
132 |
56 54 21
|
divcan2i |
|- ( 3 x. ( 1 / 3 ) ) = 1 |
133 |
53 54 21
|
divcan2i |
|- ( 3 x. ( 4 / 3 ) ) = 4 |
134 |
132 133
|
oveq12i |
|- ( ( 3 x. ( 1 / 3 ) ) + ( 3 x. ( 4 / 3 ) ) ) = ( 1 + 4 ) |
135 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
136 |
131 134 135
|
3eqtr4i |
|- ( ( 3 x. ( 1 / 3 ) ) + ( 3 x. ( 4 / 3 ) ) ) = 5 |
137 |
130 136
|
eqtrdi |
|- ( ph -> ( 3 x. ( ( 1 / 3 ) + ( 4 / 3 ) ) ) = 5 ) |
138 |
128 129 90 137
|
mvllmuld |
|- ( ph -> ( ( 1 / 3 ) + ( 4 / 3 ) ) = ( 5 / 3 ) ) |
139 |
138
|
oveq1d |
|- ( ph -> ( ( ( 1 / 3 ) + ( 4 / 3 ) ) x. E ) = ( ( 5 / 3 ) x. E ) ) |
140 |
126 127 139
|
3eqtr2d |
|- ( ph -> ( ( ( j x. E ) + ( ( 1 / 3 ) x. E ) ) + ( -u ( j x. E ) + ( ( 4 / 3 ) x. E ) ) ) = ( ( 5 / 3 ) x. E ) ) |
141 |
118 140
|
eqtrd |
|- ( ph -> ( ( ( j + ( 1 / 3 ) ) x. E ) + -u ( ( j - ( 4 / 3 ) ) x. E ) ) = ( ( 5 / 3 ) x. E ) ) |
142 |
99 100 141
|
3brtr3d |
|- ( ph -> ( Y - X ) < ( ( 5 / 3 ) x. E ) ) |
143 |
|
5lt6 |
|- 5 < 6 |
144 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
145 |
143 144
|
breqtrri |
|- 5 < ( 3 x. 2 ) |
146 |
|
3pos |
|- 0 < 3 |
147 |
20 146
|
pm3.2i |
|- ( 3 e. RR /\ 0 < 3 ) |
148 |
|
ltdivmul |
|- ( ( 5 e. RR /\ 2 e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( ( 5 / 3 ) < 2 <-> 5 < ( 3 x. 2 ) ) ) |
149 |
87 10 147 148
|
mp3an |
|- ( ( 5 / 3 ) < 2 <-> 5 < ( 3 x. 2 ) ) |
150 |
145 149
|
mpbir |
|- ( 5 / 3 ) < 2 |
151 |
150
|
a1i |
|- ( ph -> ( 5 / 3 ) < 2 ) |
152 |
91 81 1 151
|
ltmul1dd |
|- ( ph -> ( ( 5 / 3 ) x. E ) < ( 2 x. E ) ) |
153 |
9 92 13 142 152
|
lttrd |
|- ( ph -> ( Y - X ) < ( 2 x. E ) ) |
154 |
9 13
|
absltd |
|- ( ph -> ( ( abs ` ( Y - X ) ) < ( 2 x. E ) <-> ( -u ( 2 x. E ) < ( Y - X ) /\ ( Y - X ) < ( 2 x. E ) ) ) ) |
155 |
86 153 154
|
mpbir2and |
|- ( ph -> ( abs ` ( Y - X ) ) < ( 2 x. E ) ) |