Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem17.1 |
|- F/ t ph |
2 |
|
stoweidlem17.2 |
|- ( ph -> N e. NN ) |
3 |
|
stoweidlem17.3 |
|- ( ph -> X : ( 0 ... N ) --> A ) |
4 |
|
stoweidlem17.4 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
5 |
|
stoweidlem17.5 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
6 |
|
stoweidlem17.6 |
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
7 |
|
stoweidlem17.7 |
|- ( ph -> E e. RR ) |
8 |
|
stoweidlem17.8 |
|- ( ( ph /\ f e. A ) -> f : T --> RR ) |
9 |
2
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
10 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
11 |
9 10
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
12 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` 0 ) -> N e. ( 0 ... N ) ) |
13 |
11 12
|
syl |
|- ( ph -> N e. ( 0 ... N ) ) |
14 |
13
|
ancli |
|- ( ph -> ( ph /\ N e. ( 0 ... N ) ) ) |
15 |
|
eleq1 |
|- ( n = 0 -> ( n e. ( 0 ... N ) <-> 0 e. ( 0 ... N ) ) ) |
16 |
15
|
anbi2d |
|- ( n = 0 -> ( ( ph /\ n e. ( 0 ... N ) ) <-> ( ph /\ 0 e. ( 0 ... N ) ) ) ) |
17 |
|
oveq2 |
|- ( n = 0 -> ( 0 ... n ) = ( 0 ... 0 ) ) |
18 |
17
|
sumeq1d |
|- ( n = 0 -> sum_ i e. ( 0 ... n ) ( E x. ( ( X ` i ) ` t ) ) = sum_ i e. ( 0 ... 0 ) ( E x. ( ( X ` i ) ` t ) ) ) |
19 |
18
|
mpteq2dv |
|- ( n = 0 -> ( t e. T |-> sum_ i e. ( 0 ... n ) ( E x. ( ( X ` i ) ` t ) ) ) = ( t e. T |-> sum_ i e. ( 0 ... 0 ) ( E x. ( ( X ` i ) ` t ) ) ) ) |
20 |
19
|
eleq1d |
|- ( n = 0 -> ( ( t e. T |-> sum_ i e. ( 0 ... n ) ( E x. ( ( X ` i ) ` t ) ) ) e. A <-> ( t e. T |-> sum_ i e. ( 0 ... 0 ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) |
21 |
16 20
|
imbi12d |
|- ( n = 0 -> ( ( ( ph /\ n e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... n ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) <-> ( ( ph /\ 0 e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... 0 ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) ) |
22 |
|
eleq1 |
|- ( n = m -> ( n e. ( 0 ... N ) <-> m e. ( 0 ... N ) ) ) |
23 |
22
|
anbi2d |
|- ( n = m -> ( ( ph /\ n e. ( 0 ... N ) ) <-> ( ph /\ m e. ( 0 ... N ) ) ) ) |
24 |
|
oveq2 |
|- ( n = m -> ( 0 ... n ) = ( 0 ... m ) ) |
25 |
24
|
sumeq1d |
|- ( n = m -> sum_ i e. ( 0 ... n ) ( E x. ( ( X ` i ) ` t ) ) = sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) |
26 |
25
|
mpteq2dv |
|- ( n = m -> ( t e. T |-> sum_ i e. ( 0 ... n ) ( E x. ( ( X ` i ) ` t ) ) ) = ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ) |
27 |
26
|
eleq1d |
|- ( n = m -> ( ( t e. T |-> sum_ i e. ( 0 ... n ) ( E x. ( ( X ` i ) ` t ) ) ) e. A <-> ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) |
28 |
23 27
|
imbi12d |
|- ( n = m -> ( ( ( ph /\ n e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... n ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) <-> ( ( ph /\ m e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) ) |
29 |
|
eleq1 |
|- ( n = ( m + 1 ) -> ( n e. ( 0 ... N ) <-> ( m + 1 ) e. ( 0 ... N ) ) ) |
30 |
29
|
anbi2d |
|- ( n = ( m + 1 ) -> ( ( ph /\ n e. ( 0 ... N ) ) <-> ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) ) |
31 |
|
oveq2 |
|- ( n = ( m + 1 ) -> ( 0 ... n ) = ( 0 ... ( m + 1 ) ) ) |
32 |
31
|
sumeq1d |
|- ( n = ( m + 1 ) -> sum_ i e. ( 0 ... n ) ( E x. ( ( X ` i ) ` t ) ) = sum_ i e. ( 0 ... ( m + 1 ) ) ( E x. ( ( X ` i ) ` t ) ) ) |
33 |
32
|
mpteq2dv |
|- ( n = ( m + 1 ) -> ( t e. T |-> sum_ i e. ( 0 ... n ) ( E x. ( ( X ` i ) ` t ) ) ) = ( t e. T |-> sum_ i e. ( 0 ... ( m + 1 ) ) ( E x. ( ( X ` i ) ` t ) ) ) ) |
34 |
33
|
eleq1d |
|- ( n = ( m + 1 ) -> ( ( t e. T |-> sum_ i e. ( 0 ... n ) ( E x. ( ( X ` i ) ` t ) ) ) e. A <-> ( t e. T |-> sum_ i e. ( 0 ... ( m + 1 ) ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) |
35 |
30 34
|
imbi12d |
|- ( n = ( m + 1 ) -> ( ( ( ph /\ n e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... n ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) <-> ( ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... ( m + 1 ) ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) ) |
36 |
|
eleq1 |
|- ( n = N -> ( n e. ( 0 ... N ) <-> N e. ( 0 ... N ) ) ) |
37 |
36
|
anbi2d |
|- ( n = N -> ( ( ph /\ n e. ( 0 ... N ) ) <-> ( ph /\ N e. ( 0 ... N ) ) ) ) |
38 |
|
oveq2 |
|- ( n = N -> ( 0 ... n ) = ( 0 ... N ) ) |
39 |
38
|
sumeq1d |
|- ( n = N -> sum_ i e. ( 0 ... n ) ( E x. ( ( X ` i ) ` t ) ) = sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) ) |
40 |
39
|
mpteq2dv |
|- ( n = N -> ( t e. T |-> sum_ i e. ( 0 ... n ) ( E x. ( ( X ` i ) ` t ) ) ) = ( t e. T |-> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) ) ) |
41 |
40
|
eleq1d |
|- ( n = N -> ( ( t e. T |-> sum_ i e. ( 0 ... n ) ( E x. ( ( X ` i ) ` t ) ) ) e. A <-> ( t e. T |-> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) |
42 |
37 41
|
imbi12d |
|- ( n = N -> ( ( ( ph /\ n e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... n ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) <-> ( ( ph /\ N e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) ) |
43 |
|
0z |
|- 0 e. ZZ |
44 |
|
fzsn |
|- ( 0 e. ZZ -> ( 0 ... 0 ) = { 0 } ) |
45 |
43 44
|
ax-mp |
|- ( 0 ... 0 ) = { 0 } |
46 |
45
|
sumeq1i |
|- sum_ i e. ( 0 ... 0 ) ( E x. ( ( X ` i ) ` t ) ) = sum_ i e. { 0 } ( E x. ( ( X ` i ) ` t ) ) |
47 |
46
|
mpteq2i |
|- ( t e. T |-> sum_ i e. ( 0 ... 0 ) ( E x. ( ( X ` i ) ` t ) ) ) = ( t e. T |-> sum_ i e. { 0 } ( E x. ( ( X ` i ) ` t ) ) ) |
48 |
7
|
adantr |
|- ( ( ph /\ t e. T ) -> E e. RR ) |
49 |
48
|
recnd |
|- ( ( ph /\ t e. T ) -> E e. CC ) |
50 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
51 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
52 |
|
0re |
|- 0 e. RR |
53 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
54 |
|
ltle |
|- ( ( 0 e. RR /\ N e. RR ) -> ( 0 < N -> 0 <_ N ) ) |
55 |
52 53 54
|
sylancr |
|- ( N e. NN -> ( 0 < N -> 0 <_ N ) ) |
56 |
51 55
|
mpd |
|- ( N e. NN -> 0 <_ N ) |
57 |
50 56
|
jca |
|- ( N e. NN -> ( N e. ZZ /\ 0 <_ N ) ) |
58 |
2 57
|
syl |
|- ( ph -> ( N e. ZZ /\ 0 <_ N ) ) |
59 |
43
|
eluz1i |
|- ( N e. ( ZZ>= ` 0 ) <-> ( N e. ZZ /\ 0 <_ N ) ) |
60 |
58 59
|
sylibr |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
61 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... N ) ) |
62 |
60 61
|
syl |
|- ( ph -> 0 e. ( 0 ... N ) ) |
63 |
3 62
|
ffvelrnd |
|- ( ph -> ( X ` 0 ) e. A ) |
64 |
|
feq1 |
|- ( f = ( X ` 0 ) -> ( f : T --> RR <-> ( X ` 0 ) : T --> RR ) ) |
65 |
64
|
imbi2d |
|- ( f = ( X ` 0 ) -> ( ( ph -> f : T --> RR ) <-> ( ph -> ( X ` 0 ) : T --> RR ) ) ) |
66 |
8
|
expcom |
|- ( f e. A -> ( ph -> f : T --> RR ) ) |
67 |
65 66
|
vtoclga |
|- ( ( X ` 0 ) e. A -> ( ph -> ( X ` 0 ) : T --> RR ) ) |
68 |
63 67
|
mpcom |
|- ( ph -> ( X ` 0 ) : T --> RR ) |
69 |
68
|
ffvelrnda |
|- ( ( ph /\ t e. T ) -> ( ( X ` 0 ) ` t ) e. RR ) |
70 |
69
|
recnd |
|- ( ( ph /\ t e. T ) -> ( ( X ` 0 ) ` t ) e. CC ) |
71 |
49 70
|
mulcld |
|- ( ( ph /\ t e. T ) -> ( E x. ( ( X ` 0 ) ` t ) ) e. CC ) |
72 |
|
fveq2 |
|- ( i = 0 -> ( X ` i ) = ( X ` 0 ) ) |
73 |
72
|
fveq1d |
|- ( i = 0 -> ( ( X ` i ) ` t ) = ( ( X ` 0 ) ` t ) ) |
74 |
73
|
oveq2d |
|- ( i = 0 -> ( E x. ( ( X ` i ) ` t ) ) = ( E x. ( ( X ` 0 ) ` t ) ) ) |
75 |
74
|
sumsn |
|- ( ( 0 e. ZZ /\ ( E x. ( ( X ` 0 ) ` t ) ) e. CC ) -> sum_ i e. { 0 } ( E x. ( ( X ` i ) ` t ) ) = ( E x. ( ( X ` 0 ) ` t ) ) ) |
76 |
43 71 75
|
sylancr |
|- ( ( ph /\ t e. T ) -> sum_ i e. { 0 } ( E x. ( ( X ` i ) ` t ) ) = ( E x. ( ( X ` 0 ) ` t ) ) ) |
77 |
1 76
|
mpteq2da |
|- ( ph -> ( t e. T |-> sum_ i e. { 0 } ( E x. ( ( X ` i ) ` t ) ) ) = ( t e. T |-> ( E x. ( ( X ` 0 ) ` t ) ) ) ) |
78 |
47 77
|
eqtrid |
|- ( ph -> ( t e. T |-> sum_ i e. ( 0 ... 0 ) ( E x. ( ( X ` i ) ` t ) ) ) = ( t e. T |-> ( E x. ( ( X ` 0 ) ` t ) ) ) ) |
79 |
1 5 6 8 7 63
|
stoweidlem2 |
|- ( ph -> ( t e. T |-> ( E x. ( ( X ` 0 ) ` t ) ) ) e. A ) |
80 |
78 79
|
eqeltrd |
|- ( ph -> ( t e. T |-> sum_ i e. ( 0 ... 0 ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) |
81 |
80
|
adantr |
|- ( ( ph /\ 0 e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... 0 ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) |
82 |
|
eqidd |
|- ( r = t -> E = E ) |
83 |
82
|
cbvmptv |
|- ( r e. T |-> E ) = ( t e. T |-> E ) |
84 |
83
|
eqcomi |
|- ( t e. T |-> E ) = ( r e. T |-> E ) |
85 |
|
simpr |
|- ( ( ph /\ t e. T ) -> t e. T ) |
86 |
84 82 85 48
|
fvmptd3 |
|- ( ( ph /\ t e. T ) -> ( ( t e. T |-> E ) ` t ) = E ) |
87 |
86
|
oveq1d |
|- ( ( ph /\ t e. T ) -> ( ( ( t e. T |-> E ) ` t ) x. ( ( X ` ( m + 1 ) ) ` t ) ) = ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) |
88 |
1 87
|
mpteq2da |
|- ( ph -> ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( ( X ` ( m + 1 ) ) ` t ) ) ) = ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ) |
89 |
88
|
adantr |
|- ( ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) -> ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( ( X ` ( m + 1 ) ) ` t ) ) ) = ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ) |
90 |
3
|
ffvelrnda |
|- ( ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) -> ( X ` ( m + 1 ) ) e. A ) |
91 |
|
simpl |
|- ( ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) -> ph ) |
92 |
|
id |
|- ( x = E -> x = E ) |
93 |
92
|
mpteq2dv |
|- ( x = E -> ( t e. T |-> x ) = ( t e. T |-> E ) ) |
94 |
93
|
eleq1d |
|- ( x = E -> ( ( t e. T |-> x ) e. A <-> ( t e. T |-> E ) e. A ) ) |
95 |
94
|
imbi2d |
|- ( x = E -> ( ( ph -> ( t e. T |-> x ) e. A ) <-> ( ph -> ( t e. T |-> E ) e. A ) ) ) |
96 |
6
|
expcom |
|- ( x e. RR -> ( ph -> ( t e. T |-> x ) e. A ) ) |
97 |
95 96
|
vtoclga |
|- ( E e. RR -> ( ph -> ( t e. T |-> E ) e. A ) ) |
98 |
7 97
|
mpcom |
|- ( ph -> ( t e. T |-> E ) e. A ) |
99 |
98
|
adantr |
|- ( ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) -> ( t e. T |-> E ) e. A ) |
100 |
|
fveq1 |
|- ( g = ( X ` ( m + 1 ) ) -> ( g ` t ) = ( ( X ` ( m + 1 ) ) ` t ) ) |
101 |
100
|
oveq2d |
|- ( g = ( X ` ( m + 1 ) ) -> ( ( ( t e. T |-> E ) ` t ) x. ( g ` t ) ) = ( ( ( t e. T |-> E ) ` t ) x. ( ( X ` ( m + 1 ) ) ` t ) ) ) |
102 |
101
|
mpteq2dv |
|- ( g = ( X ` ( m + 1 ) ) -> ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( g ` t ) ) ) = ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ) |
103 |
102
|
eleq1d |
|- ( g = ( X ` ( m + 1 ) ) -> ( ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( g ` t ) ) ) e. A <-> ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( ( X ` ( m + 1 ) ) ` t ) ) ) e. A ) ) |
104 |
103
|
imbi2d |
|- ( g = ( X ` ( m + 1 ) ) -> ( ( ( ph /\ ( t e. T |-> E ) e. A ) -> ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( g ` t ) ) ) e. A ) <-> ( ( ph /\ ( t e. T |-> E ) e. A ) -> ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( ( X ` ( m + 1 ) ) ` t ) ) ) e. A ) ) ) |
105 |
83
|
eleq1i |
|- ( ( r e. T |-> E ) e. A <-> ( t e. T |-> E ) e. A ) |
106 |
|
fveq1 |
|- ( f = ( r e. T |-> E ) -> ( f ` t ) = ( ( r e. T |-> E ) ` t ) ) |
107 |
83
|
fveq1i |
|- ( ( r e. T |-> E ) ` t ) = ( ( t e. T |-> E ) ` t ) |
108 |
106 107
|
eqtrdi |
|- ( f = ( r e. T |-> E ) -> ( f ` t ) = ( ( t e. T |-> E ) ` t ) ) |
109 |
108
|
oveq1d |
|- ( f = ( r e. T |-> E ) -> ( ( f ` t ) x. ( g ` t ) ) = ( ( ( t e. T |-> E ) ` t ) x. ( g ` t ) ) ) |
110 |
109
|
mpteq2dv |
|- ( f = ( r e. T |-> E ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) = ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( g ` t ) ) ) ) |
111 |
110
|
eleq1d |
|- ( f = ( r e. T |-> E ) -> ( ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A <-> ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( g ` t ) ) ) e. A ) ) |
112 |
111
|
imbi2d |
|- ( f = ( r e. T |-> E ) -> ( ( ( ph /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) <-> ( ( ph /\ g e. A ) -> ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( g ` t ) ) ) e. A ) ) ) |
113 |
5
|
3com12 |
|- ( ( f e. A /\ ph /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
114 |
113
|
3expib |
|- ( f e. A -> ( ( ph /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) ) |
115 |
112 114
|
vtoclga |
|- ( ( r e. T |-> E ) e. A -> ( ( ph /\ g e. A ) -> ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( g ` t ) ) ) e. A ) ) |
116 |
105 115
|
sylbir |
|- ( ( t e. T |-> E ) e. A -> ( ( ph /\ g e. A ) -> ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( g ` t ) ) ) e. A ) ) |
117 |
116
|
3impib |
|- ( ( ( t e. T |-> E ) e. A /\ ph /\ g e. A ) -> ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( g ` t ) ) ) e. A ) |
118 |
117
|
3com13 |
|- ( ( g e. A /\ ph /\ ( t e. T |-> E ) e. A ) -> ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( g ` t ) ) ) e. A ) |
119 |
118
|
3expib |
|- ( g e. A -> ( ( ph /\ ( t e. T |-> E ) e. A ) -> ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( g ` t ) ) ) e. A ) ) |
120 |
104 119
|
vtoclga |
|- ( ( X ` ( m + 1 ) ) e. A -> ( ( ph /\ ( t e. T |-> E ) e. A ) -> ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( ( X ` ( m + 1 ) ) ` t ) ) ) e. A ) ) |
121 |
120
|
3impib |
|- ( ( ( X ` ( m + 1 ) ) e. A /\ ph /\ ( t e. T |-> E ) e. A ) -> ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( ( X ` ( m + 1 ) ) ` t ) ) ) e. A ) |
122 |
90 91 99 121
|
syl3anc |
|- ( ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) -> ( t e. T |-> ( ( ( t e. T |-> E ) ` t ) x. ( ( X ` ( m + 1 ) ) ` t ) ) ) e. A ) |
123 |
89 122
|
eqeltrrd |
|- ( ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) -> ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) e. A ) |
124 |
123
|
ad2antll |
|- ( ( ( m e. NN0 -> ( ( ph /\ m e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) /\ ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) ) -> ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) e. A ) |
125 |
|
simprrl |
|- ( ( ( m e. NN0 -> ( ( ph /\ m e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) /\ ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) ) -> ph ) |
126 |
|
simpl |
|- ( ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) -> m e. NN0 ) |
127 |
|
simprl |
|- ( ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) -> ph ) |
128 |
2
|
ad2antrl |
|- ( ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) -> N e. NN ) |
129 |
128
|
nnnn0d |
|- ( ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) -> N e. NN0 ) |
130 |
|
nn0re |
|- ( m e. NN0 -> m e. RR ) |
131 |
130
|
adantr |
|- ( ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) -> m e. RR ) |
132 |
|
peano2nn0 |
|- ( m e. NN0 -> ( m + 1 ) e. NN0 ) |
133 |
132
|
nn0red |
|- ( m e. NN0 -> ( m + 1 ) e. RR ) |
134 |
133
|
adantr |
|- ( ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) -> ( m + 1 ) e. RR ) |
135 |
2
|
nnred |
|- ( ph -> N e. RR ) |
136 |
135
|
ad2antrl |
|- ( ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) -> N e. RR ) |
137 |
|
lep1 |
|- ( m e. RR -> m <_ ( m + 1 ) ) |
138 |
126 130 137
|
3syl |
|- ( ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) -> m <_ ( m + 1 ) ) |
139 |
|
elfzle2 |
|- ( ( m + 1 ) e. ( 0 ... N ) -> ( m + 1 ) <_ N ) |
140 |
139
|
ad2antll |
|- ( ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) -> ( m + 1 ) <_ N ) |
141 |
131 134 136 138 140
|
letrd |
|- ( ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) -> m <_ N ) |
142 |
|
elfz2nn0 |
|- ( m e. ( 0 ... N ) <-> ( m e. NN0 /\ N e. NN0 /\ m <_ N ) ) |
143 |
126 129 141 142
|
syl3anbrc |
|- ( ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) -> m e. ( 0 ... N ) ) |
144 |
126 127 143
|
jca32 |
|- ( ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) -> ( m e. NN0 /\ ( ph /\ m e. ( 0 ... N ) ) ) ) |
145 |
144
|
adantl |
|- ( ( ( m e. NN0 -> ( ( ph /\ m e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) /\ ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) ) -> ( m e. NN0 /\ ( ph /\ m e. ( 0 ... N ) ) ) ) |
146 |
|
pm3.31 |
|- ( ( m e. NN0 -> ( ( ph /\ m e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) -> ( ( m e. NN0 /\ ( ph /\ m e. ( 0 ... N ) ) ) -> ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) |
147 |
146
|
adantr |
|- ( ( ( m e. NN0 -> ( ( ph /\ m e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) /\ ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) ) -> ( ( m e. NN0 /\ ( ph /\ m e. ( 0 ... N ) ) ) -> ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) |
148 |
145 147
|
mpd |
|- ( ( ( m e. NN0 -> ( ( ph /\ m e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) /\ ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) ) -> ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) |
149 |
|
fveq2 |
|- ( r = t -> ( ( X ` ( m + 1 ) ) ` r ) = ( ( X ` ( m + 1 ) ) ` t ) ) |
150 |
149
|
oveq2d |
|- ( r = t -> ( E x. ( ( X ` ( m + 1 ) ) ` r ) ) = ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) |
151 |
150
|
cbvmptv |
|- ( r e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` r ) ) ) = ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) |
152 |
151
|
eleq1i |
|- ( ( r e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` r ) ) ) e. A <-> ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) e. A ) |
153 |
|
fveq1 |
|- ( g = ( r e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` r ) ) ) -> ( g ` t ) = ( ( r e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` r ) ) ) ` t ) ) |
154 |
151
|
fveq1i |
|- ( ( r e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` r ) ) ) ` t ) = ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ` t ) |
155 |
153 154
|
eqtrdi |
|- ( g = ( r e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` r ) ) ) -> ( g ` t ) = ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ` t ) ) |
156 |
155
|
oveq2d |
|- ( g = ( r e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` r ) ) ) -> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( g ` t ) ) = ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ` t ) ) ) |
157 |
156
|
mpteq2dv |
|- ( g = ( r e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` r ) ) ) -> ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( g ` t ) ) ) = ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ` t ) ) ) ) |
158 |
157
|
eleq1d |
|- ( g = ( r e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` r ) ) ) -> ( ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( g ` t ) ) ) e. A <-> ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ` t ) ) ) e. A ) ) |
159 |
158
|
imbi2d |
|- ( g = ( r e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` r ) ) ) -> ( ( ( ph /\ ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) -> ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( g ` t ) ) ) e. A ) <-> ( ( ph /\ ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) -> ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ` t ) ) ) e. A ) ) ) |
160 |
|
fveq2 |
|- ( r = t -> ( ( X ` i ) ` r ) = ( ( X ` i ) ` t ) ) |
161 |
160
|
oveq2d |
|- ( r = t -> ( E x. ( ( X ` i ) ` r ) ) = ( E x. ( ( X ` i ) ` t ) ) ) |
162 |
161
|
sumeq2sdv |
|- ( r = t -> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` r ) ) = sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) |
163 |
162
|
cbvmptv |
|- ( r e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` r ) ) ) = ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) |
164 |
163
|
eleq1i |
|- ( ( r e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` r ) ) ) e. A <-> ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) |
165 |
|
fveq1 |
|- ( f = ( r e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` r ) ) ) -> ( f ` t ) = ( ( r e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` r ) ) ) ` t ) ) |
166 |
163
|
fveq1i |
|- ( ( r e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` r ) ) ) ` t ) = ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) |
167 |
165 166
|
eqtrdi |
|- ( f = ( r e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` r ) ) ) -> ( f ` t ) = ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) ) |
168 |
167
|
oveq1d |
|- ( f = ( r e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` r ) ) ) -> ( ( f ` t ) + ( g ` t ) ) = ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( g ` t ) ) ) |
169 |
168
|
mpteq2dv |
|- ( f = ( r e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` r ) ) ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) = ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( g ` t ) ) ) ) |
170 |
169
|
eleq1d |
|- ( f = ( r e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` r ) ) ) -> ( ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A <-> ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( g ` t ) ) ) e. A ) ) |
171 |
170
|
imbi2d |
|- ( f = ( r e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` r ) ) ) -> ( ( ( ph /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) <-> ( ( ph /\ g e. A ) -> ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( g ` t ) ) ) e. A ) ) ) |
172 |
4
|
3com12 |
|- ( ( f e. A /\ ph /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
173 |
172
|
3expib |
|- ( f e. A -> ( ( ph /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) ) |
174 |
171 173
|
vtoclga |
|- ( ( r e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` r ) ) ) e. A -> ( ( ph /\ g e. A ) -> ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( g ` t ) ) ) e. A ) ) |
175 |
164 174
|
sylbir |
|- ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A -> ( ( ph /\ g e. A ) -> ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( g ` t ) ) ) e. A ) ) |
176 |
175
|
3impib |
|- ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A /\ ph /\ g e. A ) -> ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( g ` t ) ) ) e. A ) |
177 |
176
|
3com13 |
|- ( ( g e. A /\ ph /\ ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) -> ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( g ` t ) ) ) e. A ) |
178 |
177
|
3expib |
|- ( g e. A -> ( ( ph /\ ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) -> ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( g ` t ) ) ) e. A ) ) |
179 |
159 178
|
vtoclga |
|- ( ( r e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` r ) ) ) e. A -> ( ( ph /\ ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) -> ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ` t ) ) ) e. A ) ) |
180 |
152 179
|
sylbir |
|- ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) e. A -> ( ( ph /\ ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) -> ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ` t ) ) ) e. A ) ) |
181 |
180
|
3impib |
|- ( ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) e. A /\ ph /\ ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) -> ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ` t ) ) ) e. A ) |
182 |
124 125 148 181
|
syl3anc |
|- ( ( ( m e. NN0 -> ( ( ph /\ m e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) /\ ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) ) -> ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ` t ) ) ) e. A ) |
183 |
|
3anass |
|- ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) <-> ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) ) |
184 |
183
|
biimpri |
|- ( ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) -> ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) |
185 |
184
|
adantl |
|- ( ( ( m e. NN0 -> ( ( ph /\ m e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) /\ ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) ) -> ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) |
186 |
|
nfv |
|- F/ t m e. NN0 |
187 |
|
nfv |
|- F/ t ( m + 1 ) e. ( 0 ... N ) |
188 |
186 1 187
|
nf3an |
|- F/ t ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) |
189 |
|
simpr |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> t e. T ) |
190 |
|
fzfid |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> ( 0 ... m ) e. Fin ) |
191 |
7
|
3ad2ant2 |
|- ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) -> E e. RR ) |
192 |
191
|
adantr |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> E e. RR ) |
193 |
192
|
adantr |
|- ( ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) /\ i e. ( 0 ... m ) ) -> E e. RR ) |
194 |
|
fzelp1 |
|- ( i e. ( 0 ... m ) -> i e. ( 0 ... ( m + 1 ) ) ) |
195 |
194
|
anim2i |
|- ( ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) /\ i e. ( 0 ... m ) ) -> ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) /\ i e. ( 0 ... ( m + 1 ) ) ) ) |
196 |
|
an32 |
|- ( ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) /\ i e. ( 0 ... ( m + 1 ) ) ) <-> ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ i e. ( 0 ... ( m + 1 ) ) ) /\ t e. T ) ) |
197 |
195 196
|
sylib |
|- ( ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) /\ i e. ( 0 ... m ) ) -> ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ i e. ( 0 ... ( m + 1 ) ) ) /\ t e. T ) ) |
198 |
3
|
3ad2ant2 |
|- ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) -> X : ( 0 ... N ) --> A ) |
199 |
198
|
adantr |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ i e. ( 0 ... ( m + 1 ) ) ) -> X : ( 0 ... N ) --> A ) |
200 |
|
elfzuz3 |
|- ( ( m + 1 ) e. ( 0 ... N ) -> N e. ( ZZ>= ` ( m + 1 ) ) ) |
201 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( m + 1 ) ) -> ( 0 ... ( m + 1 ) ) C_ ( 0 ... N ) ) |
202 |
200 201
|
syl |
|- ( ( m + 1 ) e. ( 0 ... N ) -> ( 0 ... ( m + 1 ) ) C_ ( 0 ... N ) ) |
203 |
202
|
sselda |
|- ( ( ( m + 1 ) e. ( 0 ... N ) /\ i e. ( 0 ... ( m + 1 ) ) ) -> i e. ( 0 ... N ) ) |
204 |
203
|
3ad2antl3 |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ i e. ( 0 ... ( m + 1 ) ) ) -> i e. ( 0 ... N ) ) |
205 |
199 204
|
ffvelrnd |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ i e. ( 0 ... ( m + 1 ) ) ) -> ( X ` i ) e. A ) |
206 |
|
simpl2 |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ i e. ( 0 ... ( m + 1 ) ) ) -> ph ) |
207 |
|
feq1 |
|- ( f = ( X ` i ) -> ( f : T --> RR <-> ( X ` i ) : T --> RR ) ) |
208 |
207
|
imbi2d |
|- ( f = ( X ` i ) -> ( ( ph -> f : T --> RR ) <-> ( ph -> ( X ` i ) : T --> RR ) ) ) |
209 |
208 66
|
vtoclga |
|- ( ( X ` i ) e. A -> ( ph -> ( X ` i ) : T --> RR ) ) |
210 |
205 206 209
|
sylc |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ i e. ( 0 ... ( m + 1 ) ) ) -> ( X ` i ) : T --> RR ) |
211 |
210
|
ffvelrnda |
|- ( ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ i e. ( 0 ... ( m + 1 ) ) ) /\ t e. T ) -> ( ( X ` i ) ` t ) e. RR ) |
212 |
197 211
|
syl |
|- ( ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) /\ i e. ( 0 ... m ) ) -> ( ( X ` i ) ` t ) e. RR ) |
213 |
193 212
|
remulcld |
|- ( ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) /\ i e. ( 0 ... m ) ) -> ( E x. ( ( X ` i ) ` t ) ) e. RR ) |
214 |
190 213
|
fsumrecl |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) e. RR ) |
215 |
|
eqid |
|- ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) = ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) |
216 |
215
|
fvmpt2 |
|- ( ( t e. T /\ sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) e. RR ) -> ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) = sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) |
217 |
189 214 216
|
syl2anc |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) = sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) |
218 |
217
|
oveq1d |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) = ( sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) + ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ) |
219 |
|
3simpc |
|- ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) -> ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) |
220 |
219
|
adantr |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) |
221 |
|
feq1 |
|- ( f = ( X ` ( m + 1 ) ) -> ( f : T --> RR <-> ( X ` ( m + 1 ) ) : T --> RR ) ) |
222 |
221
|
imbi2d |
|- ( f = ( X ` ( m + 1 ) ) -> ( ( ph -> f : T --> RR ) <-> ( ph -> ( X ` ( m + 1 ) ) : T --> RR ) ) ) |
223 |
222 66
|
vtoclga |
|- ( ( X ` ( m + 1 ) ) e. A -> ( ph -> ( X ` ( m + 1 ) ) : T --> RR ) ) |
224 |
90 91 223
|
sylc |
|- ( ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) -> ( X ` ( m + 1 ) ) : T --> RR ) |
225 |
220 224
|
syl |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> ( X ` ( m + 1 ) ) : T --> RR ) |
226 |
225 189
|
ffvelrnd |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> ( ( X ` ( m + 1 ) ) ` t ) e. RR ) |
227 |
192 226
|
remulcld |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) e. RR ) |
228 |
|
eqid |
|- ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) = ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) |
229 |
228
|
fvmpt2 |
|- ( ( t e. T /\ ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) e. RR ) -> ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ` t ) = ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) |
230 |
189 227 229
|
syl2anc |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ` t ) = ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) |
231 |
230
|
oveq2d |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ` t ) ) = ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ) |
232 |
|
elfzuz |
|- ( ( m + 1 ) e. ( 0 ... N ) -> ( m + 1 ) e. ( ZZ>= ` 0 ) ) |
233 |
232
|
3ad2ant3 |
|- ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) -> ( m + 1 ) e. ( ZZ>= ` 0 ) ) |
234 |
233
|
adantr |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> ( m + 1 ) e. ( ZZ>= ` 0 ) ) |
235 |
192
|
adantr |
|- ( ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) /\ i e. ( 0 ... ( m + 1 ) ) ) -> E e. RR ) |
236 |
211
|
an32s |
|- ( ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) /\ i e. ( 0 ... ( m + 1 ) ) ) -> ( ( X ` i ) ` t ) e. RR ) |
237 |
|
remulcl |
|- ( ( E e. RR /\ ( ( X ` i ) ` t ) e. RR ) -> ( E x. ( ( X ` i ) ` t ) ) e. RR ) |
238 |
237
|
recnd |
|- ( ( E e. RR /\ ( ( X ` i ) ` t ) e. RR ) -> ( E x. ( ( X ` i ) ` t ) ) e. CC ) |
239 |
235 236 238
|
syl2anc |
|- ( ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) /\ i e. ( 0 ... ( m + 1 ) ) ) -> ( E x. ( ( X ` i ) ` t ) ) e. CC ) |
240 |
|
fveq2 |
|- ( i = ( m + 1 ) -> ( X ` i ) = ( X ` ( m + 1 ) ) ) |
241 |
240
|
fveq1d |
|- ( i = ( m + 1 ) -> ( ( X ` i ) ` t ) = ( ( X ` ( m + 1 ) ) ` t ) ) |
242 |
241
|
oveq2d |
|- ( i = ( m + 1 ) -> ( E x. ( ( X ` i ) ` t ) ) = ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) |
243 |
234 239 242
|
fsumm1 |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> sum_ i e. ( 0 ... ( m + 1 ) ) ( E x. ( ( X ` i ) ` t ) ) = ( sum_ i e. ( 0 ... ( ( m + 1 ) - 1 ) ) ( E x. ( ( X ` i ) ` t ) ) + ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ) |
244 |
|
nn0cn |
|- ( m e. NN0 -> m e. CC ) |
245 |
244
|
3ad2ant1 |
|- ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) -> m e. CC ) |
246 |
245
|
adantr |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> m e. CC ) |
247 |
|
1cnd |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> 1 e. CC ) |
248 |
246 247
|
pncand |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> ( ( m + 1 ) - 1 ) = m ) |
249 |
248
|
oveq2d |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> ( 0 ... ( ( m + 1 ) - 1 ) ) = ( 0 ... m ) ) |
250 |
249
|
sumeq1d |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> sum_ i e. ( 0 ... ( ( m + 1 ) - 1 ) ) ( E x. ( ( X ` i ) ` t ) ) = sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) |
251 |
250
|
oveq1d |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> ( sum_ i e. ( 0 ... ( ( m + 1 ) - 1 ) ) ( E x. ( ( X ` i ) ` t ) ) + ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) = ( sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) + ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ) |
252 |
243 251
|
eqtrd |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> sum_ i e. ( 0 ... ( m + 1 ) ) ( E x. ( ( X ` i ) ` t ) ) = ( sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) + ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ) |
253 |
218 231 252
|
3eqtr4rd |
|- ( ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) /\ t e. T ) -> sum_ i e. ( 0 ... ( m + 1 ) ) ( E x. ( ( X ` i ) ` t ) ) = ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ` t ) ) ) |
254 |
188 253
|
mpteq2da |
|- ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... ( m + 1 ) ) ( E x. ( ( X ` i ) ` t ) ) ) = ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ` t ) ) ) ) |
255 |
254
|
eleq1d |
|- ( ( m e. NN0 /\ ph /\ ( m + 1 ) e. ( 0 ... N ) ) -> ( ( t e. T |-> sum_ i e. ( 0 ... ( m + 1 ) ) ( E x. ( ( X ` i ) ` t ) ) ) e. A <-> ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ` t ) ) ) e. A ) ) |
256 |
185 255
|
syl |
|- ( ( ( m e. NN0 -> ( ( ph /\ m e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) /\ ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) ) -> ( ( t e. T |-> sum_ i e. ( 0 ... ( m + 1 ) ) ( E x. ( ( X ` i ) ` t ) ) ) e. A <-> ( t e. T |-> ( ( ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) ` t ) + ( ( t e. T |-> ( E x. ( ( X ` ( m + 1 ) ) ` t ) ) ) ` t ) ) ) e. A ) ) |
257 |
182 256
|
mpbird |
|- ( ( ( m e. NN0 -> ( ( ph /\ m e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) /\ ( m e. NN0 /\ ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) ) ) -> ( t e. T |-> sum_ i e. ( 0 ... ( m + 1 ) ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) |
258 |
257
|
exp32 |
|- ( ( m e. NN0 -> ( ( ph /\ m e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) -> ( m e. NN0 -> ( ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... ( m + 1 ) ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) ) |
259 |
258
|
pm2.86i |
|- ( m e. NN0 -> ( ( ( ph /\ m e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... m ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) -> ( ( ph /\ ( m + 1 ) e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... ( m + 1 ) ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) ) |
260 |
21 28 35 42 81 259
|
nn0ind |
|- ( N e. NN0 -> ( ( ph /\ N e. ( 0 ... N ) ) -> ( t e. T |-> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) ) |
261 |
9 14 260
|
sylc |
|- ( ph -> ( t e. T |-> sum_ i e. ( 0 ... N ) ( E x. ( ( X ` i ) ` t ) ) ) e. A ) |