Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem22.8 |
|- F/ t ph |
2 |
|
stoweidlem22.9 |
|- F/_ t F |
3 |
|
stoweidlem22.10 |
|- F/_ t G |
4 |
|
stoweidlem22.1 |
|- H = ( t e. T |-> ( ( F ` t ) - ( G ` t ) ) ) |
5 |
|
stoweidlem22.2 |
|- I = ( t e. T |-> -u 1 ) |
6 |
|
stoweidlem22.3 |
|- L = ( t e. T |-> ( ( I ` t ) x. ( G ` t ) ) ) |
7 |
|
stoweidlem22.4 |
|- ( ( ph /\ f e. A ) -> f : T --> RR ) |
8 |
|
stoweidlem22.5 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
9 |
|
stoweidlem22.6 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
10 |
|
stoweidlem22.7 |
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
11 |
2
|
nfel1 |
|- F/ t F e. A |
12 |
3
|
nfel1 |
|- F/ t G e. A |
13 |
1 11 12
|
nf3an |
|- F/ t ( ph /\ F e. A /\ G e. A ) |
14 |
|
simpr |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> t e. T ) |
15 |
|
simpl1 |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> ph ) |
16 |
|
neg1rr |
|- -u 1 e. RR |
17 |
10
|
stoweidlem4 |
|- ( ( ph /\ -u 1 e. RR ) -> ( t e. T |-> -u 1 ) e. A ) |
18 |
16 17
|
mpan2 |
|- ( ph -> ( t e. T |-> -u 1 ) e. A ) |
19 |
5 18
|
eqeltrid |
|- ( ph -> I e. A ) |
20 |
|
eleq1 |
|- ( f = I -> ( f e. A <-> I e. A ) ) |
21 |
20
|
anbi2d |
|- ( f = I -> ( ( ph /\ f e. A ) <-> ( ph /\ I e. A ) ) ) |
22 |
|
feq1 |
|- ( f = I -> ( f : T --> RR <-> I : T --> RR ) ) |
23 |
21 22
|
imbi12d |
|- ( f = I -> ( ( ( ph /\ f e. A ) -> f : T --> RR ) <-> ( ( ph /\ I e. A ) -> I : T --> RR ) ) ) |
24 |
23 7
|
vtoclg |
|- ( I e. A -> ( ( ph /\ I e. A ) -> I : T --> RR ) ) |
25 |
24
|
anabsi7 |
|- ( ( ph /\ I e. A ) -> I : T --> RR ) |
26 |
15 19 25
|
syl2anc2 |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> I : T --> RR ) |
27 |
26 14
|
ffvelrnd |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> ( I ` t ) e. RR ) |
28 |
|
simpl3 |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> G e. A ) |
29 |
|
eleq1 |
|- ( f = G -> ( f e. A <-> G e. A ) ) |
30 |
29
|
anbi2d |
|- ( f = G -> ( ( ph /\ f e. A ) <-> ( ph /\ G e. A ) ) ) |
31 |
|
feq1 |
|- ( f = G -> ( f : T --> RR <-> G : T --> RR ) ) |
32 |
30 31
|
imbi12d |
|- ( f = G -> ( ( ( ph /\ f e. A ) -> f : T --> RR ) <-> ( ( ph /\ G e. A ) -> G : T --> RR ) ) ) |
33 |
32 7
|
vtoclg |
|- ( G e. A -> ( ( ph /\ G e. A ) -> G : T --> RR ) ) |
34 |
33
|
anabsi7 |
|- ( ( ph /\ G e. A ) -> G : T --> RR ) |
35 |
34
|
3adant3 |
|- ( ( ph /\ G e. A /\ t e. T ) -> G : T --> RR ) |
36 |
|
simp3 |
|- ( ( ph /\ G e. A /\ t e. T ) -> t e. T ) |
37 |
35 36
|
ffvelrnd |
|- ( ( ph /\ G e. A /\ t e. T ) -> ( G ` t ) e. RR ) |
38 |
15 28 14 37
|
syl3anc |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> ( G ` t ) e. RR ) |
39 |
27 38
|
remulcld |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> ( ( I ` t ) x. ( G ` t ) ) e. RR ) |
40 |
6
|
fvmpt2 |
|- ( ( t e. T /\ ( ( I ` t ) x. ( G ` t ) ) e. RR ) -> ( L ` t ) = ( ( I ` t ) x. ( G ` t ) ) ) |
41 |
14 39 40
|
syl2anc |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> ( L ` t ) = ( ( I ` t ) x. ( G ` t ) ) ) |
42 |
5
|
fvmpt2 |
|- ( ( t e. T /\ -u 1 e. RR ) -> ( I ` t ) = -u 1 ) |
43 |
16 42
|
mpan2 |
|- ( t e. T -> ( I ` t ) = -u 1 ) |
44 |
43
|
adantl |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> ( I ` t ) = -u 1 ) |
45 |
44
|
oveq1d |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> ( ( I ` t ) x. ( G ` t ) ) = ( -u 1 x. ( G ` t ) ) ) |
46 |
38
|
recnd |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> ( G ` t ) e. CC ) |
47 |
46
|
mulm1d |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> ( -u 1 x. ( G ` t ) ) = -u ( G ` t ) ) |
48 |
41 45 47
|
3eqtrd |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> ( L ` t ) = -u ( G ` t ) ) |
49 |
48
|
oveq2d |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> ( ( F ` t ) + ( L ` t ) ) = ( ( F ` t ) + -u ( G ` t ) ) ) |
50 |
|
simpl2 |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> F e. A ) |
51 |
|
eleq1 |
|- ( f = F -> ( f e. A <-> F e. A ) ) |
52 |
51
|
anbi2d |
|- ( f = F -> ( ( ph /\ f e. A ) <-> ( ph /\ F e. A ) ) ) |
53 |
|
feq1 |
|- ( f = F -> ( f : T --> RR <-> F : T --> RR ) ) |
54 |
52 53
|
imbi12d |
|- ( f = F -> ( ( ( ph /\ f e. A ) -> f : T --> RR ) <-> ( ( ph /\ F e. A ) -> F : T --> RR ) ) ) |
55 |
54 7
|
vtoclg |
|- ( F e. A -> ( ( ph /\ F e. A ) -> F : T --> RR ) ) |
56 |
55
|
anabsi7 |
|- ( ( ph /\ F e. A ) -> F : T --> RR ) |
57 |
15 50 56
|
syl2anc |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> F : T --> RR ) |
58 |
57 14
|
ffvelrnd |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> ( F ` t ) e. RR ) |
59 |
58
|
recnd |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> ( F ` t ) e. CC ) |
60 |
59 46
|
negsubd |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> ( ( F ` t ) + -u ( G ` t ) ) = ( ( F ` t ) - ( G ` t ) ) ) |
61 |
49 60
|
eqtr2d |
|- ( ( ( ph /\ F e. A /\ G e. A ) /\ t e. T ) -> ( ( F ` t ) - ( G ` t ) ) = ( ( F ` t ) + ( L ` t ) ) ) |
62 |
13 61
|
mpteq2da |
|- ( ( ph /\ F e. A /\ G e. A ) -> ( t e. T |-> ( ( F ` t ) - ( G ` t ) ) ) = ( t e. T |-> ( ( F ` t ) + ( L ` t ) ) ) ) |
63 |
19
|
3ad2ant1 |
|- ( ( ph /\ F e. A /\ G e. A ) -> I e. A ) |
64 |
|
nfmpt1 |
|- F/_ t ( t e. T |-> -u 1 ) |
65 |
5 64
|
nfcxfr |
|- F/_ t I |
66 |
65
|
nfeq2 |
|- F/ t f = I |
67 |
3
|
nfeq2 |
|- F/ t g = G |
68 |
66 67 9
|
stoweidlem6 |
|- ( ( ph /\ I e. A /\ G e. A ) -> ( t e. T |-> ( ( I ` t ) x. ( G ` t ) ) ) e. A ) |
69 |
63 68
|
syld3an2 |
|- ( ( ph /\ F e. A /\ G e. A ) -> ( t e. T |-> ( ( I ` t ) x. ( G ` t ) ) ) e. A ) |
70 |
6 69
|
eqeltrid |
|- ( ( ph /\ F e. A /\ G e. A ) -> L e. A ) |
71 |
|
nfmpt1 |
|- F/_ t ( t e. T |-> ( ( I ` t ) x. ( G ` t ) ) ) |
72 |
6 71
|
nfcxfr |
|- F/_ t L |
73 |
8 2 72
|
stoweidlem8 |
|- ( ( ph /\ F e. A /\ L e. A ) -> ( t e. T |-> ( ( F ` t ) + ( L ` t ) ) ) e. A ) |
74 |
70 73
|
syld3an3 |
|- ( ( ph /\ F e. A /\ G e. A ) -> ( t e. T |-> ( ( F ` t ) + ( L ` t ) ) ) e. A ) |
75 |
62 74
|
eqeltrd |
|- ( ( ph /\ F e. A /\ G e. A ) -> ( t e. T |-> ( ( F ` t ) - ( G ` t ) ) ) e. A ) |