Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem23.1 |
|- F/ t ph |
2 |
|
stoweidlem23.2 |
|- F/_ t G |
3 |
|
stoweidlem23.3 |
|- H = ( t e. T |-> ( ( G ` t ) - ( G ` Z ) ) ) |
4 |
|
stoweidlem23.4 |
|- ( ( ph /\ f e. A ) -> f : T --> RR ) |
5 |
|
stoweidlem23.5 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
6 |
|
stoweidlem23.6 |
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
7 |
|
stoweidlem23.7 |
|- ( ph -> S e. T ) |
8 |
|
stoweidlem23.8 |
|- ( ph -> Z e. T ) |
9 |
|
stoweidlem23.9 |
|- ( ph -> G e. A ) |
10 |
|
stoweidlem23.10 |
|- ( ph -> ( G ` S ) =/= ( G ` Z ) ) |
11 |
9
|
ancli |
|- ( ph -> ( ph /\ G e. A ) ) |
12 |
|
eleq1 |
|- ( f = G -> ( f e. A <-> G e. A ) ) |
13 |
12
|
anbi2d |
|- ( f = G -> ( ( ph /\ f e. A ) <-> ( ph /\ G e. A ) ) ) |
14 |
|
feq1 |
|- ( f = G -> ( f : T --> RR <-> G : T --> RR ) ) |
15 |
13 14
|
imbi12d |
|- ( f = G -> ( ( ( ph /\ f e. A ) -> f : T --> RR ) <-> ( ( ph /\ G e. A ) -> G : T --> RR ) ) ) |
16 |
15 4
|
vtoclg |
|- ( G e. A -> ( ( ph /\ G e. A ) -> G : T --> RR ) ) |
17 |
9 11 16
|
sylc |
|- ( ph -> G : T --> RR ) |
18 |
17
|
ffvelrnda |
|- ( ( ph /\ t e. T ) -> ( G ` t ) e. RR ) |
19 |
18
|
recnd |
|- ( ( ph /\ t e. T ) -> ( G ` t ) e. CC ) |
20 |
17 8
|
ffvelrnd |
|- ( ph -> ( G ` Z ) e. RR ) |
21 |
20
|
adantr |
|- ( ( ph /\ t e. T ) -> ( G ` Z ) e. RR ) |
22 |
21
|
recnd |
|- ( ( ph /\ t e. T ) -> ( G ` Z ) e. CC ) |
23 |
19 22
|
negsubd |
|- ( ( ph /\ t e. T ) -> ( ( G ` t ) + -u ( G ` Z ) ) = ( ( G ` t ) - ( G ` Z ) ) ) |
24 |
1 23
|
mpteq2da |
|- ( ph -> ( t e. T |-> ( ( G ` t ) + -u ( G ` Z ) ) ) = ( t e. T |-> ( ( G ` t ) - ( G ` Z ) ) ) ) |
25 |
|
simpr |
|- ( ( ph /\ t e. T ) -> t e. T ) |
26 |
20
|
renegcld |
|- ( ph -> -u ( G ` Z ) e. RR ) |
27 |
26
|
adantr |
|- ( ( ph /\ t e. T ) -> -u ( G ` Z ) e. RR ) |
28 |
|
eqid |
|- ( t e. T |-> -u ( G ` Z ) ) = ( t e. T |-> -u ( G ` Z ) ) |
29 |
28
|
fvmpt2 |
|- ( ( t e. T /\ -u ( G ` Z ) e. RR ) -> ( ( t e. T |-> -u ( G ` Z ) ) ` t ) = -u ( G ` Z ) ) |
30 |
25 27 29
|
syl2anc |
|- ( ( ph /\ t e. T ) -> ( ( t e. T |-> -u ( G ` Z ) ) ` t ) = -u ( G ` Z ) ) |
31 |
30
|
oveq2d |
|- ( ( ph /\ t e. T ) -> ( ( G ` t ) + ( ( t e. T |-> -u ( G ` Z ) ) ` t ) ) = ( ( G ` t ) + -u ( G ` Z ) ) ) |
32 |
1 31
|
mpteq2da |
|- ( ph -> ( t e. T |-> ( ( G ` t ) + ( ( t e. T |-> -u ( G ` Z ) ) ` t ) ) ) = ( t e. T |-> ( ( G ` t ) + -u ( G ` Z ) ) ) ) |
33 |
26
|
ancli |
|- ( ph -> ( ph /\ -u ( G ` Z ) e. RR ) ) |
34 |
|
eleq1 |
|- ( x = -u ( G ` Z ) -> ( x e. RR <-> -u ( G ` Z ) e. RR ) ) |
35 |
34
|
anbi2d |
|- ( x = -u ( G ` Z ) -> ( ( ph /\ x e. RR ) <-> ( ph /\ -u ( G ` Z ) e. RR ) ) ) |
36 |
|
nfcv |
|- F/_ t Z |
37 |
2 36
|
nffv |
|- F/_ t ( G ` Z ) |
38 |
37
|
nfneg |
|- F/_ t -u ( G ` Z ) |
39 |
38
|
nfeq2 |
|- F/ t x = -u ( G ` Z ) |
40 |
|
simpl |
|- ( ( x = -u ( G ` Z ) /\ t e. T ) -> x = -u ( G ` Z ) ) |
41 |
39 40
|
mpteq2da |
|- ( x = -u ( G ` Z ) -> ( t e. T |-> x ) = ( t e. T |-> -u ( G ` Z ) ) ) |
42 |
41
|
eleq1d |
|- ( x = -u ( G ` Z ) -> ( ( t e. T |-> x ) e. A <-> ( t e. T |-> -u ( G ` Z ) ) e. A ) ) |
43 |
35 42
|
imbi12d |
|- ( x = -u ( G ` Z ) -> ( ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) <-> ( ( ph /\ -u ( G ` Z ) e. RR ) -> ( t e. T |-> -u ( G ` Z ) ) e. A ) ) ) |
44 |
43 6
|
vtoclg |
|- ( -u ( G ` Z ) e. RR -> ( ( ph /\ -u ( G ` Z ) e. RR ) -> ( t e. T |-> -u ( G ` Z ) ) e. A ) ) |
45 |
26 33 44
|
sylc |
|- ( ph -> ( t e. T |-> -u ( G ` Z ) ) e. A ) |
46 |
|
nfmpt1 |
|- F/_ t ( t e. T |-> -u ( G ` Z ) ) |
47 |
5 2 46
|
stoweidlem8 |
|- ( ( ph /\ G e. A /\ ( t e. T |-> -u ( G ` Z ) ) e. A ) -> ( t e. T |-> ( ( G ` t ) + ( ( t e. T |-> -u ( G ` Z ) ) ` t ) ) ) e. A ) |
48 |
9 45 47
|
mpd3an23 |
|- ( ph -> ( t e. T |-> ( ( G ` t ) + ( ( t e. T |-> -u ( G ` Z ) ) ` t ) ) ) e. A ) |
49 |
32 48
|
eqeltrrd |
|- ( ph -> ( t e. T |-> ( ( G ` t ) + -u ( G ` Z ) ) ) e. A ) |
50 |
24 49
|
eqeltrrd |
|- ( ph -> ( t e. T |-> ( ( G ` t ) - ( G ` Z ) ) ) e. A ) |
51 |
3 50
|
eqeltrid |
|- ( ph -> H e. A ) |
52 |
17 7
|
ffvelrnd |
|- ( ph -> ( G ` S ) e. RR ) |
53 |
52
|
recnd |
|- ( ph -> ( G ` S ) e. CC ) |
54 |
20
|
recnd |
|- ( ph -> ( G ` Z ) e. CC ) |
55 |
53 54 10
|
subne0d |
|- ( ph -> ( ( G ` S ) - ( G ` Z ) ) =/= 0 ) |
56 |
52 20
|
resubcld |
|- ( ph -> ( ( G ` S ) - ( G ` Z ) ) e. RR ) |
57 |
|
nfcv |
|- F/_ t S |
58 |
2 57
|
nffv |
|- F/_ t ( G ` S ) |
59 |
|
nfcv |
|- F/_ t - |
60 |
58 59 37
|
nfov |
|- F/_ t ( ( G ` S ) - ( G ` Z ) ) |
61 |
|
fveq2 |
|- ( t = S -> ( G ` t ) = ( G ` S ) ) |
62 |
61
|
oveq1d |
|- ( t = S -> ( ( G ` t ) - ( G ` Z ) ) = ( ( G ` S ) - ( G ` Z ) ) ) |
63 |
57 60 62 3
|
fvmptf |
|- ( ( S e. T /\ ( ( G ` S ) - ( G ` Z ) ) e. RR ) -> ( H ` S ) = ( ( G ` S ) - ( G ` Z ) ) ) |
64 |
7 56 63
|
syl2anc |
|- ( ph -> ( H ` S ) = ( ( G ` S ) - ( G ` Z ) ) ) |
65 |
20 20
|
resubcld |
|- ( ph -> ( ( G ` Z ) - ( G ` Z ) ) e. RR ) |
66 |
37 59 37
|
nfov |
|- F/_ t ( ( G ` Z ) - ( G ` Z ) ) |
67 |
|
fveq2 |
|- ( t = Z -> ( G ` t ) = ( G ` Z ) ) |
68 |
67
|
oveq1d |
|- ( t = Z -> ( ( G ` t ) - ( G ` Z ) ) = ( ( G ` Z ) - ( G ` Z ) ) ) |
69 |
36 66 68 3
|
fvmptf |
|- ( ( Z e. T /\ ( ( G ` Z ) - ( G ` Z ) ) e. RR ) -> ( H ` Z ) = ( ( G ` Z ) - ( G ` Z ) ) ) |
70 |
8 65 69
|
syl2anc |
|- ( ph -> ( H ` Z ) = ( ( G ` Z ) - ( G ` Z ) ) ) |
71 |
54
|
subidd |
|- ( ph -> ( ( G ` Z ) - ( G ` Z ) ) = 0 ) |
72 |
70 71
|
eqtrd |
|- ( ph -> ( H ` Z ) = 0 ) |
73 |
55 64 72
|
3netr4d |
|- ( ph -> ( H ` S ) =/= ( H ` Z ) ) |
74 |
51 73 72
|
3jca |
|- ( ph -> ( H e. A /\ ( H ` S ) =/= ( H ` Z ) /\ ( H ` Z ) = 0 ) ) |