Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem3.1 |
|- F/_ i F |
2 |
|
stoweidlem3.2 |
|- F/ i ph |
3 |
|
stoweidlem3.3 |
|- X = seq 1 ( x. , F ) |
4 |
|
stoweidlem3.4 |
|- ( ph -> M e. NN ) |
5 |
|
stoweidlem3.5 |
|- ( ph -> F : ( 1 ... M ) --> RR ) |
6 |
|
stoweidlem3.6 |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> A < ( F ` i ) ) |
7 |
|
stoweidlem3.7 |
|- ( ph -> A e. RR+ ) |
8 |
|
elnnuz |
|- ( M e. NN <-> M e. ( ZZ>= ` 1 ) ) |
9 |
4 8
|
sylib |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
10 |
|
eluzfz2 |
|- ( M e. ( ZZ>= ` 1 ) -> M e. ( 1 ... M ) ) |
11 |
9 10
|
syl |
|- ( ph -> M e. ( 1 ... M ) ) |
12 |
|
oveq2 |
|- ( n = 1 -> ( A ^ n ) = ( A ^ 1 ) ) |
13 |
|
fveq2 |
|- ( n = 1 -> ( X ` n ) = ( X ` 1 ) ) |
14 |
12 13
|
breq12d |
|- ( n = 1 -> ( ( A ^ n ) < ( X ` n ) <-> ( A ^ 1 ) < ( X ` 1 ) ) ) |
15 |
14
|
imbi2d |
|- ( n = 1 -> ( ( ph -> ( A ^ n ) < ( X ` n ) ) <-> ( ph -> ( A ^ 1 ) < ( X ` 1 ) ) ) ) |
16 |
|
oveq2 |
|- ( n = m -> ( A ^ n ) = ( A ^ m ) ) |
17 |
|
fveq2 |
|- ( n = m -> ( X ` n ) = ( X ` m ) ) |
18 |
16 17
|
breq12d |
|- ( n = m -> ( ( A ^ n ) < ( X ` n ) <-> ( A ^ m ) < ( X ` m ) ) ) |
19 |
18
|
imbi2d |
|- ( n = m -> ( ( ph -> ( A ^ n ) < ( X ` n ) ) <-> ( ph -> ( A ^ m ) < ( X ` m ) ) ) ) |
20 |
|
oveq2 |
|- ( n = ( m + 1 ) -> ( A ^ n ) = ( A ^ ( m + 1 ) ) ) |
21 |
|
fveq2 |
|- ( n = ( m + 1 ) -> ( X ` n ) = ( X ` ( m + 1 ) ) ) |
22 |
20 21
|
breq12d |
|- ( n = ( m + 1 ) -> ( ( A ^ n ) < ( X ` n ) <-> ( A ^ ( m + 1 ) ) < ( X ` ( m + 1 ) ) ) ) |
23 |
22
|
imbi2d |
|- ( n = ( m + 1 ) -> ( ( ph -> ( A ^ n ) < ( X ` n ) ) <-> ( ph -> ( A ^ ( m + 1 ) ) < ( X ` ( m + 1 ) ) ) ) ) |
24 |
|
oveq2 |
|- ( n = M -> ( A ^ n ) = ( A ^ M ) ) |
25 |
|
fveq2 |
|- ( n = M -> ( X ` n ) = ( X ` M ) ) |
26 |
24 25
|
breq12d |
|- ( n = M -> ( ( A ^ n ) < ( X ` n ) <-> ( A ^ M ) < ( X ` M ) ) ) |
27 |
26
|
imbi2d |
|- ( n = M -> ( ( ph -> ( A ^ n ) < ( X ` n ) ) <-> ( ph -> ( A ^ M ) < ( X ` M ) ) ) ) |
28 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
29 |
4
|
nnzd |
|- ( ph -> M e. ZZ ) |
30 |
|
1le1 |
|- 1 <_ 1 |
31 |
30
|
a1i |
|- ( ph -> 1 <_ 1 ) |
32 |
4
|
nnge1d |
|- ( ph -> 1 <_ M ) |
33 |
28 29 28 31 32
|
elfzd |
|- ( ph -> 1 e. ( 1 ... M ) ) |
34 |
33
|
ancli |
|- ( ph -> ( ph /\ 1 e. ( 1 ... M ) ) ) |
35 |
|
nfv |
|- F/ i 1 e. ( 1 ... M ) |
36 |
2 35
|
nfan |
|- F/ i ( ph /\ 1 e. ( 1 ... M ) ) |
37 |
|
nfcv |
|- F/_ i A |
38 |
|
nfcv |
|- F/_ i < |
39 |
|
nfcv |
|- F/_ i 1 |
40 |
1 39
|
nffv |
|- F/_ i ( F ` 1 ) |
41 |
37 38 40
|
nfbr |
|- F/ i A < ( F ` 1 ) |
42 |
36 41
|
nfim |
|- F/ i ( ( ph /\ 1 e. ( 1 ... M ) ) -> A < ( F ` 1 ) ) |
43 |
|
eleq1 |
|- ( i = 1 -> ( i e. ( 1 ... M ) <-> 1 e. ( 1 ... M ) ) ) |
44 |
43
|
anbi2d |
|- ( i = 1 -> ( ( ph /\ i e. ( 1 ... M ) ) <-> ( ph /\ 1 e. ( 1 ... M ) ) ) ) |
45 |
|
fveq2 |
|- ( i = 1 -> ( F ` i ) = ( F ` 1 ) ) |
46 |
45
|
breq2d |
|- ( i = 1 -> ( A < ( F ` i ) <-> A < ( F ` 1 ) ) ) |
47 |
44 46
|
imbi12d |
|- ( i = 1 -> ( ( ( ph /\ i e. ( 1 ... M ) ) -> A < ( F ` i ) ) <-> ( ( ph /\ 1 e. ( 1 ... M ) ) -> A < ( F ` 1 ) ) ) ) |
48 |
42 47 6
|
vtoclg1f |
|- ( 1 e. ( 1 ... M ) -> ( ( ph /\ 1 e. ( 1 ... M ) ) -> A < ( F ` 1 ) ) ) |
49 |
33 34 48
|
sylc |
|- ( ph -> A < ( F ` 1 ) ) |
50 |
7
|
rpcnd |
|- ( ph -> A e. CC ) |
51 |
50
|
exp1d |
|- ( ph -> ( A ^ 1 ) = A ) |
52 |
3
|
fveq1i |
|- ( X ` 1 ) = ( seq 1 ( x. , F ) ` 1 ) |
53 |
|
1z |
|- 1 e. ZZ |
54 |
|
seq1 |
|- ( 1 e. ZZ -> ( seq 1 ( x. , F ) ` 1 ) = ( F ` 1 ) ) |
55 |
53 54
|
ax-mp |
|- ( seq 1 ( x. , F ) ` 1 ) = ( F ` 1 ) |
56 |
52 55
|
eqtri |
|- ( X ` 1 ) = ( F ` 1 ) |
57 |
56
|
a1i |
|- ( ph -> ( X ` 1 ) = ( F ` 1 ) ) |
58 |
49 51 57
|
3brtr4d |
|- ( ph -> ( A ^ 1 ) < ( X ` 1 ) ) |
59 |
58
|
a1i |
|- ( M e. ( ZZ>= ` 1 ) -> ( ph -> ( A ^ 1 ) < ( X ` 1 ) ) ) |
60 |
7
|
3ad2ant3 |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> A e. RR+ ) |
61 |
60
|
rpred |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> A e. RR ) |
62 |
|
elfzouz |
|- ( m e. ( 1 ..^ M ) -> m e. ( ZZ>= ` 1 ) ) |
63 |
|
elnnuz |
|- ( m e. NN <-> m e. ( ZZ>= ` 1 ) ) |
64 |
|
nnnn0 |
|- ( m e. NN -> m e. NN0 ) |
65 |
63 64
|
sylbir |
|- ( m e. ( ZZ>= ` 1 ) -> m e. NN0 ) |
66 |
62 65
|
syl |
|- ( m e. ( 1 ..^ M ) -> m e. NN0 ) |
67 |
66
|
3ad2ant1 |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> m e. NN0 ) |
68 |
61 67
|
reexpcld |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> ( A ^ m ) e. RR ) |
69 |
3
|
fveq1i |
|- ( X ` m ) = ( seq 1 ( x. , F ) ` m ) |
70 |
62
|
adantr |
|- ( ( m e. ( 1 ..^ M ) /\ ph ) -> m e. ( ZZ>= ` 1 ) ) |
71 |
|
nfv |
|- F/ i m e. ( 1 ..^ M ) |
72 |
71 2
|
nfan |
|- F/ i ( m e. ( 1 ..^ M ) /\ ph ) |
73 |
|
nfv |
|- F/ i a e. ( 1 ... m ) |
74 |
72 73
|
nfan |
|- F/ i ( ( m e. ( 1 ..^ M ) /\ ph ) /\ a e. ( 1 ... m ) ) |
75 |
|
nfcv |
|- F/_ i a |
76 |
1 75
|
nffv |
|- F/_ i ( F ` a ) |
77 |
76
|
nfel1 |
|- F/ i ( F ` a ) e. RR |
78 |
74 77
|
nfim |
|- F/ i ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ a e. ( 1 ... m ) ) -> ( F ` a ) e. RR ) |
79 |
|
eleq1 |
|- ( i = a -> ( i e. ( 1 ... m ) <-> a e. ( 1 ... m ) ) ) |
80 |
79
|
anbi2d |
|- ( i = a -> ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ i e. ( 1 ... m ) ) <-> ( ( m e. ( 1 ..^ M ) /\ ph ) /\ a e. ( 1 ... m ) ) ) ) |
81 |
|
fveq2 |
|- ( i = a -> ( F ` i ) = ( F ` a ) ) |
82 |
81
|
eleq1d |
|- ( i = a -> ( ( F ` i ) e. RR <-> ( F ` a ) e. RR ) ) |
83 |
80 82
|
imbi12d |
|- ( i = a -> ( ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ i e. ( 1 ... m ) ) -> ( F ` i ) e. RR ) <-> ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ a e. ( 1 ... m ) ) -> ( F ` a ) e. RR ) ) ) |
84 |
5
|
ad2antlr |
|- ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ i e. ( 1 ... m ) ) -> F : ( 1 ... M ) --> RR ) |
85 |
|
1zzd |
|- ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ i e. ( 1 ... m ) ) -> 1 e. ZZ ) |
86 |
29
|
ad2antlr |
|- ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ i e. ( 1 ... m ) ) -> M e. ZZ ) |
87 |
|
elfzelz |
|- ( i e. ( 1 ... m ) -> i e. ZZ ) |
88 |
87
|
adantl |
|- ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ i e. ( 1 ... m ) ) -> i e. ZZ ) |
89 |
|
elfzle1 |
|- ( i e. ( 1 ... m ) -> 1 <_ i ) |
90 |
89
|
adantl |
|- ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ i e. ( 1 ... m ) ) -> 1 <_ i ) |
91 |
87
|
zred |
|- ( i e. ( 1 ... m ) -> i e. RR ) |
92 |
91
|
adantl |
|- ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ i e. ( 1 ... m ) ) -> i e. RR ) |
93 |
|
elfzoelz |
|- ( m e. ( 1 ..^ M ) -> m e. ZZ ) |
94 |
93
|
zred |
|- ( m e. ( 1 ..^ M ) -> m e. RR ) |
95 |
94
|
ad2antrr |
|- ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ i e. ( 1 ... m ) ) -> m e. RR ) |
96 |
4
|
nnred |
|- ( ph -> M e. RR ) |
97 |
96
|
ad2antlr |
|- ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ i e. ( 1 ... m ) ) -> M e. RR ) |
98 |
|
elfzle2 |
|- ( i e. ( 1 ... m ) -> i <_ m ) |
99 |
98
|
adantl |
|- ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ i e. ( 1 ... m ) ) -> i <_ m ) |
100 |
|
elfzoel2 |
|- ( m e. ( 1 ..^ M ) -> M e. ZZ ) |
101 |
100
|
zred |
|- ( m e. ( 1 ..^ M ) -> M e. RR ) |
102 |
|
elfzolt2 |
|- ( m e. ( 1 ..^ M ) -> m < M ) |
103 |
94 101 102
|
ltled |
|- ( m e. ( 1 ..^ M ) -> m <_ M ) |
104 |
103
|
ad2antrr |
|- ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ i e. ( 1 ... m ) ) -> m <_ M ) |
105 |
92 95 97 99 104
|
letrd |
|- ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ i e. ( 1 ... m ) ) -> i <_ M ) |
106 |
85 86 88 90 105
|
elfzd |
|- ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ i e. ( 1 ... m ) ) -> i e. ( 1 ... M ) ) |
107 |
84 106
|
ffvelrnd |
|- ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ i e. ( 1 ... m ) ) -> ( F ` i ) e. RR ) |
108 |
78 83 107
|
chvarfv |
|- ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ a e. ( 1 ... m ) ) -> ( F ` a ) e. RR ) |
109 |
|
remulcl |
|- ( ( a e. RR /\ j e. RR ) -> ( a x. j ) e. RR ) |
110 |
109
|
adantl |
|- ( ( ( m e. ( 1 ..^ M ) /\ ph ) /\ ( a e. RR /\ j e. RR ) ) -> ( a x. j ) e. RR ) |
111 |
70 108 110
|
seqcl |
|- ( ( m e. ( 1 ..^ M ) /\ ph ) -> ( seq 1 ( x. , F ) ` m ) e. RR ) |
112 |
69 111
|
eqeltrid |
|- ( ( m e. ( 1 ..^ M ) /\ ph ) -> ( X ` m ) e. RR ) |
113 |
112
|
3adant2 |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> ( X ` m ) e. RR ) |
114 |
5
|
3ad2ant3 |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> F : ( 1 ... M ) --> RR ) |
115 |
|
fzofzp1 |
|- ( m e. ( 1 ..^ M ) -> ( m + 1 ) e. ( 1 ... M ) ) |
116 |
115
|
3ad2ant1 |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> ( m + 1 ) e. ( 1 ... M ) ) |
117 |
114 116
|
ffvelrnd |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> ( F ` ( m + 1 ) ) e. RR ) |
118 |
7
|
rpge0d |
|- ( ph -> 0 <_ A ) |
119 |
118
|
3ad2ant3 |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> 0 <_ A ) |
120 |
61 67 119
|
expge0d |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> 0 <_ ( A ^ m ) ) |
121 |
|
simp3 |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> ph ) |
122 |
|
simp2 |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> ( ph -> ( A ^ m ) < ( X ` m ) ) ) |
123 |
121 122
|
mpd |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> ( A ^ m ) < ( X ` m ) ) |
124 |
115
|
adantr |
|- ( ( m e. ( 1 ..^ M ) /\ ph ) -> ( m + 1 ) e. ( 1 ... M ) ) |
125 |
|
simpr |
|- ( ( m e. ( 1 ..^ M ) /\ ph ) -> ph ) |
126 |
125 124
|
jca |
|- ( ( m e. ( 1 ..^ M ) /\ ph ) -> ( ph /\ ( m + 1 ) e. ( 1 ... M ) ) ) |
127 |
|
nfv |
|- F/ i ( m + 1 ) e. ( 1 ... M ) |
128 |
2 127
|
nfan |
|- F/ i ( ph /\ ( m + 1 ) e. ( 1 ... M ) ) |
129 |
|
nfcv |
|- F/_ i ( m + 1 ) |
130 |
1 129
|
nffv |
|- F/_ i ( F ` ( m + 1 ) ) |
131 |
37 38 130
|
nfbr |
|- F/ i A < ( F ` ( m + 1 ) ) |
132 |
128 131
|
nfim |
|- F/ i ( ( ph /\ ( m + 1 ) e. ( 1 ... M ) ) -> A < ( F ` ( m + 1 ) ) ) |
133 |
|
eleq1 |
|- ( i = ( m + 1 ) -> ( i e. ( 1 ... M ) <-> ( m + 1 ) e. ( 1 ... M ) ) ) |
134 |
133
|
anbi2d |
|- ( i = ( m + 1 ) -> ( ( ph /\ i e. ( 1 ... M ) ) <-> ( ph /\ ( m + 1 ) e. ( 1 ... M ) ) ) ) |
135 |
|
fveq2 |
|- ( i = ( m + 1 ) -> ( F ` i ) = ( F ` ( m + 1 ) ) ) |
136 |
135
|
breq2d |
|- ( i = ( m + 1 ) -> ( A < ( F ` i ) <-> A < ( F ` ( m + 1 ) ) ) ) |
137 |
134 136
|
imbi12d |
|- ( i = ( m + 1 ) -> ( ( ( ph /\ i e. ( 1 ... M ) ) -> A < ( F ` i ) ) <-> ( ( ph /\ ( m + 1 ) e. ( 1 ... M ) ) -> A < ( F ` ( m + 1 ) ) ) ) ) |
138 |
132 137 6
|
vtoclg1f |
|- ( ( m + 1 ) e. ( 1 ... M ) -> ( ( ph /\ ( m + 1 ) e. ( 1 ... M ) ) -> A < ( F ` ( m + 1 ) ) ) ) |
139 |
124 126 138
|
sylc |
|- ( ( m e. ( 1 ..^ M ) /\ ph ) -> A < ( F ` ( m + 1 ) ) ) |
140 |
139
|
3adant2 |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> A < ( F ` ( m + 1 ) ) ) |
141 |
68 113 61 117 120 123 119 140
|
ltmul12ad |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> ( ( A ^ m ) x. A ) < ( ( X ` m ) x. ( F ` ( m + 1 ) ) ) ) |
142 |
50
|
3ad2ant3 |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> A e. CC ) |
143 |
142 67
|
expp1d |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> ( A ^ ( m + 1 ) ) = ( ( A ^ m ) x. A ) ) |
144 |
3
|
fveq1i |
|- ( X ` ( m + 1 ) ) = ( seq 1 ( x. , F ) ` ( m + 1 ) ) |
145 |
144
|
a1i |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> ( X ` ( m + 1 ) ) = ( seq 1 ( x. , F ) ` ( m + 1 ) ) ) |
146 |
62
|
3ad2ant1 |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> m e. ( ZZ>= ` 1 ) ) |
147 |
|
seqp1 |
|- ( m e. ( ZZ>= ` 1 ) -> ( seq 1 ( x. , F ) ` ( m + 1 ) ) = ( ( seq 1 ( x. , F ) ` m ) x. ( F ` ( m + 1 ) ) ) ) |
148 |
146 147
|
syl |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> ( seq 1 ( x. , F ) ` ( m + 1 ) ) = ( ( seq 1 ( x. , F ) ` m ) x. ( F ` ( m + 1 ) ) ) ) |
149 |
69
|
a1i |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> ( X ` m ) = ( seq 1 ( x. , F ) ` m ) ) |
150 |
149
|
eqcomd |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> ( seq 1 ( x. , F ) ` m ) = ( X ` m ) ) |
151 |
150
|
oveq1d |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> ( ( seq 1 ( x. , F ) ` m ) x. ( F ` ( m + 1 ) ) ) = ( ( X ` m ) x. ( F ` ( m + 1 ) ) ) ) |
152 |
145 148 151
|
3eqtrd |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> ( X ` ( m + 1 ) ) = ( ( X ` m ) x. ( F ` ( m + 1 ) ) ) ) |
153 |
141 143 152
|
3brtr4d |
|- ( ( m e. ( 1 ..^ M ) /\ ( ph -> ( A ^ m ) < ( X ` m ) ) /\ ph ) -> ( A ^ ( m + 1 ) ) < ( X ` ( m + 1 ) ) ) |
154 |
153
|
3exp |
|- ( m e. ( 1 ..^ M ) -> ( ( ph -> ( A ^ m ) < ( X ` m ) ) -> ( ph -> ( A ^ ( m + 1 ) ) < ( X ` ( m + 1 ) ) ) ) ) |
155 |
15 19 23 27 59 154
|
fzind2 |
|- ( M e. ( 1 ... M ) -> ( ph -> ( A ^ M ) < ( X ` M ) ) ) |
156 |
11 155
|
mpcom |
|- ( ph -> ( A ^ M ) < ( X ` M ) ) |