Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem30.1 |
|- Q = { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) } |
2 |
|
stoweidlem30.2 |
|- P = ( t e. T |-> ( ( 1 / M ) x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` t ) ) ) |
3 |
|
stoweidlem30.3 |
|- ( ph -> M e. NN ) |
4 |
|
stoweidlem30.4 |
|- ( ph -> G : ( 1 ... M ) --> Q ) |
5 |
|
stoweidlem30.5 |
|- ( ( ph /\ f e. A ) -> f : T --> RR ) |
6 |
|
eleq1 |
|- ( s = S -> ( s e. T <-> S e. T ) ) |
7 |
6
|
anbi2d |
|- ( s = S -> ( ( ph /\ s e. T ) <-> ( ph /\ S e. T ) ) ) |
8 |
|
fveq2 |
|- ( s = S -> ( P ` s ) = ( P ` S ) ) |
9 |
|
fveq2 |
|- ( s = S -> ( ( G ` i ) ` s ) = ( ( G ` i ) ` S ) ) |
10 |
9
|
sumeq2sdv |
|- ( s = S -> sum_ i e. ( 1 ... M ) ( ( G ` i ) ` s ) = sum_ i e. ( 1 ... M ) ( ( G ` i ) ` S ) ) |
11 |
10
|
oveq2d |
|- ( s = S -> ( ( 1 / M ) x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` s ) ) = ( ( 1 / M ) x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` S ) ) ) |
12 |
8 11
|
eqeq12d |
|- ( s = S -> ( ( P ` s ) = ( ( 1 / M ) x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` s ) ) <-> ( P ` S ) = ( ( 1 / M ) x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` S ) ) ) ) |
13 |
7 12
|
imbi12d |
|- ( s = S -> ( ( ( ph /\ s e. T ) -> ( P ` s ) = ( ( 1 / M ) x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` s ) ) ) <-> ( ( ph /\ S e. T ) -> ( P ` S ) = ( ( 1 / M ) x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` S ) ) ) ) ) |
14 |
|
fveq2 |
|- ( t = s -> ( ( G ` i ) ` t ) = ( ( G ` i ) ` s ) ) |
15 |
14
|
sumeq2sdv |
|- ( t = s -> sum_ i e. ( 1 ... M ) ( ( G ` i ) ` t ) = sum_ i e. ( 1 ... M ) ( ( G ` i ) ` s ) ) |
16 |
15
|
oveq2d |
|- ( t = s -> ( ( 1 / M ) x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` t ) ) = ( ( 1 / M ) x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` s ) ) ) |
17 |
|
simpr |
|- ( ( ph /\ s e. T ) -> s e. T ) |
18 |
3
|
nnrecred |
|- ( ph -> ( 1 / M ) e. RR ) |
19 |
18
|
adantr |
|- ( ( ph /\ s e. T ) -> ( 1 / M ) e. RR ) |
20 |
|
fzfid |
|- ( ( ph /\ s e. T ) -> ( 1 ... M ) e. Fin ) |
21 |
1 4 5
|
stoweidlem15 |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ s e. T ) -> ( ( ( G ` i ) ` s ) e. RR /\ 0 <_ ( ( G ` i ) ` s ) /\ ( ( G ` i ) ` s ) <_ 1 ) ) |
22 |
21
|
simp1d |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ s e. T ) -> ( ( G ` i ) ` s ) e. RR ) |
23 |
22
|
an32s |
|- ( ( ( ph /\ s e. T ) /\ i e. ( 1 ... M ) ) -> ( ( G ` i ) ` s ) e. RR ) |
24 |
20 23
|
fsumrecl |
|- ( ( ph /\ s e. T ) -> sum_ i e. ( 1 ... M ) ( ( G ` i ) ` s ) e. RR ) |
25 |
19 24
|
remulcld |
|- ( ( ph /\ s e. T ) -> ( ( 1 / M ) x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` s ) ) e. RR ) |
26 |
2 16 17 25
|
fvmptd3 |
|- ( ( ph /\ s e. T ) -> ( P ` s ) = ( ( 1 / M ) x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` s ) ) ) |
27 |
13 26
|
vtoclg |
|- ( S e. T -> ( ( ph /\ S e. T ) -> ( P ` S ) = ( ( 1 / M ) x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` S ) ) ) ) |
28 |
27
|
anabsi7 |
|- ( ( ph /\ S e. T ) -> ( P ` S ) = ( ( 1 / M ) x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` S ) ) ) |