Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem32.1 |
|- F/ t ph |
2 |
|
stoweidlem32.2 |
|- P = ( t e. T |-> ( Y x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` t ) ) ) |
3 |
|
stoweidlem32.3 |
|- F = ( t e. T |-> sum_ i e. ( 1 ... M ) ( ( G ` i ) ` t ) ) |
4 |
|
stoweidlem32.4 |
|- H = ( t e. T |-> Y ) |
5 |
|
stoweidlem32.5 |
|- ( ph -> M e. NN ) |
6 |
|
stoweidlem32.6 |
|- ( ph -> Y e. RR ) |
7 |
|
stoweidlem32.7 |
|- ( ph -> G : ( 1 ... M ) --> A ) |
8 |
|
stoweidlem32.8 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
9 |
|
stoweidlem32.9 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
10 |
|
stoweidlem32.10 |
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
11 |
|
stoweidlem32.11 |
|- ( ( ph /\ f e. A ) -> f : T --> RR ) |
12 |
|
fveq2 |
|- ( t = s -> ( ( G ` i ) ` t ) = ( ( G ` i ) ` s ) ) |
13 |
12
|
sumeq2sdv |
|- ( t = s -> sum_ i e. ( 1 ... M ) ( ( G ` i ) ` t ) = sum_ i e. ( 1 ... M ) ( ( G ` i ) ` s ) ) |
14 |
13
|
cbvmptv |
|- ( t e. T |-> sum_ i e. ( 1 ... M ) ( ( G ` i ) ` t ) ) = ( s e. T |-> sum_ i e. ( 1 ... M ) ( ( G ` i ) ` s ) ) |
15 |
3 14
|
eqtri |
|- F = ( s e. T |-> sum_ i e. ( 1 ... M ) ( ( G ` i ) ` s ) ) |
16 |
|
fveq2 |
|- ( s = t -> ( ( G ` i ) ` s ) = ( ( G ` i ) ` t ) ) |
17 |
16
|
sumeq2sdv |
|- ( s = t -> sum_ i e. ( 1 ... M ) ( ( G ` i ) ` s ) = sum_ i e. ( 1 ... M ) ( ( G ` i ) ` t ) ) |
18 |
|
simpr |
|- ( ( ph /\ t e. T ) -> t e. T ) |
19 |
|
fzfid |
|- ( ( ph /\ t e. T ) -> ( 1 ... M ) e. Fin ) |
20 |
|
simpl |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ph ) |
21 |
7
|
ffvelrnda |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( G ` i ) e. A ) |
22 |
|
eleq1 |
|- ( f = ( G ` i ) -> ( f e. A <-> ( G ` i ) e. A ) ) |
23 |
22
|
anbi2d |
|- ( f = ( G ` i ) -> ( ( ph /\ f e. A ) <-> ( ph /\ ( G ` i ) e. A ) ) ) |
24 |
|
feq1 |
|- ( f = ( G ` i ) -> ( f : T --> RR <-> ( G ` i ) : T --> RR ) ) |
25 |
23 24
|
imbi12d |
|- ( f = ( G ` i ) -> ( ( ( ph /\ f e. A ) -> f : T --> RR ) <-> ( ( ph /\ ( G ` i ) e. A ) -> ( G ` i ) : T --> RR ) ) ) |
26 |
25 11
|
vtoclg |
|- ( ( G ` i ) e. A -> ( ( ph /\ ( G ` i ) e. A ) -> ( G ` i ) : T --> RR ) ) |
27 |
21 26
|
syl |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ph /\ ( G ` i ) e. A ) -> ( G ` i ) : T --> RR ) ) |
28 |
20 21 27
|
mp2and |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( G ` i ) : T --> RR ) |
29 |
28
|
adantlr |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> ( G ` i ) : T --> RR ) |
30 |
|
simplr |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> t e. T ) |
31 |
29 30
|
ffvelrnd |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> ( ( G ` i ) ` t ) e. RR ) |
32 |
19 31
|
fsumrecl |
|- ( ( ph /\ t e. T ) -> sum_ i e. ( 1 ... M ) ( ( G ` i ) ` t ) e. RR ) |
33 |
15 17 18 32
|
fvmptd3 |
|- ( ( ph /\ t e. T ) -> ( F ` t ) = sum_ i e. ( 1 ... M ) ( ( G ` i ) ` t ) ) |
34 |
33 32
|
eqeltrd |
|- ( ( ph /\ t e. T ) -> ( F ` t ) e. RR ) |
35 |
34
|
recnd |
|- ( ( ph /\ t e. T ) -> ( F ` t ) e. CC ) |
36 |
|
eqidd |
|- ( s = t -> Y = Y ) |
37 |
36
|
cbvmptv |
|- ( s e. T |-> Y ) = ( t e. T |-> Y ) |
38 |
4 37
|
eqtr4i |
|- H = ( s e. T |-> Y ) |
39 |
6
|
adantr |
|- ( ( ph /\ t e. T ) -> Y e. RR ) |
40 |
38 36 18 39
|
fvmptd3 |
|- ( ( ph /\ t e. T ) -> ( H ` t ) = Y ) |
41 |
40 39
|
eqeltrd |
|- ( ( ph /\ t e. T ) -> ( H ` t ) e. RR ) |
42 |
41
|
recnd |
|- ( ( ph /\ t e. T ) -> ( H ` t ) e. CC ) |
43 |
35 42
|
mulcomd |
|- ( ( ph /\ t e. T ) -> ( ( F ` t ) x. ( H ` t ) ) = ( ( H ` t ) x. ( F ` t ) ) ) |
44 |
40 33
|
oveq12d |
|- ( ( ph /\ t e. T ) -> ( ( H ` t ) x. ( F ` t ) ) = ( Y x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` t ) ) ) |
45 |
43 44
|
eqtr2d |
|- ( ( ph /\ t e. T ) -> ( Y x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` t ) ) = ( ( F ` t ) x. ( H ` t ) ) ) |
46 |
1 45
|
mpteq2da |
|- ( ph -> ( t e. T |-> ( Y x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` t ) ) ) = ( t e. T |-> ( ( F ` t ) x. ( H ` t ) ) ) ) |
47 |
2 46
|
syl5eq |
|- ( ph -> P = ( t e. T |-> ( ( F ` t ) x. ( H ` t ) ) ) ) |
48 |
1 3 5 7 8 11
|
stoweidlem20 |
|- ( ph -> F e. A ) |
49 |
10
|
stoweidlem4 |
|- ( ( ph /\ Y e. RR ) -> ( t e. T |-> Y ) e. A ) |
50 |
6 49
|
mpdan |
|- ( ph -> ( t e. T |-> Y ) e. A ) |
51 |
4 50
|
eqeltrid |
|- ( ph -> H e. A ) |
52 |
|
nfmpt1 |
|- F/_ t ( t e. T |-> sum_ i e. ( 1 ... M ) ( ( G ` i ) ` t ) ) |
53 |
3 52
|
nfcxfr |
|- F/_ t F |
54 |
53
|
nfeq2 |
|- F/ t f = F |
55 |
|
nfmpt1 |
|- F/_ t ( t e. T |-> Y ) |
56 |
4 55
|
nfcxfr |
|- F/_ t H |
57 |
56
|
nfeq2 |
|- F/ t g = H |
58 |
54 57 9
|
stoweidlem6 |
|- ( ( ph /\ F e. A /\ H e. A ) -> ( t e. T |-> ( ( F ` t ) x. ( H ` t ) ) ) e. A ) |
59 |
48 51 58
|
mpd3an23 |
|- ( ph -> ( t e. T |-> ( ( F ` t ) x. ( H ` t ) ) ) e. A ) |
60 |
47 59
|
eqeltrd |
|- ( ph -> P e. A ) |