Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem36.1 |
|- F/_ h Q |
2 |
|
stoweidlem36.2 |
|- F/_ t H |
3 |
|
stoweidlem36.3 |
|- F/_ t F |
4 |
|
stoweidlem36.4 |
|- F/_ t G |
5 |
|
stoweidlem36.5 |
|- F/ t ph |
6 |
|
stoweidlem36.6 |
|- K = ( topGen ` ran (,) ) |
7 |
|
stoweidlem36.7 |
|- Q = { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) } |
8 |
|
stoweidlem36.8 |
|- T = U. J |
9 |
|
stoweidlem36.9 |
|- G = ( t e. T |-> ( ( F ` t ) x. ( F ` t ) ) ) |
10 |
|
stoweidlem36.10 |
|- N = sup ( ran G , RR , < ) |
11 |
|
stoweidlem36.11 |
|- H = ( t e. T |-> ( ( G ` t ) / N ) ) |
12 |
|
stoweidlem36.12 |
|- ( ph -> J e. Comp ) |
13 |
|
stoweidlem36.13 |
|- ( ph -> A C_ ( J Cn K ) ) |
14 |
|
stoweidlem36.14 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
15 |
|
stoweidlem36.15 |
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
16 |
|
stoweidlem36.16 |
|- ( ph -> S e. T ) |
17 |
|
stoweidlem36.17 |
|- ( ph -> Z e. T ) |
18 |
|
stoweidlem36.18 |
|- ( ph -> F e. A ) |
19 |
|
stoweidlem36.19 |
|- ( ph -> ( F ` S ) =/= ( F ` Z ) ) |
20 |
|
stoweidlem36.20 |
|- ( ph -> ( F ` Z ) = 0 ) |
21 |
|
eqid |
|- ( J Cn K ) = ( J Cn K ) |
22 |
3
|
nfeq2 |
|- F/ t f = F |
23 |
3
|
nfeq2 |
|- F/ t g = F |
24 |
22 23 14
|
stoweidlem6 |
|- ( ( ph /\ F e. A /\ F e. A ) -> ( t e. T |-> ( ( F ` t ) x. ( F ` t ) ) ) e. A ) |
25 |
18 18 24
|
mpd3an23 |
|- ( ph -> ( t e. T |-> ( ( F ` t ) x. ( F ` t ) ) ) e. A ) |
26 |
9 25
|
eqeltrid |
|- ( ph -> G e. A ) |
27 |
13 26
|
sseldd |
|- ( ph -> G e. ( J Cn K ) ) |
28 |
6 8 21 27
|
fcnre |
|- ( ph -> G : T --> RR ) |
29 |
28
|
ffvelrnda |
|- ( ( ph /\ t e. T ) -> ( G ` t ) e. RR ) |
30 |
29
|
recnd |
|- ( ( ph /\ t e. T ) -> ( G ` t ) e. CC ) |
31 |
16
|
ne0d |
|- ( ph -> T =/= (/) ) |
32 |
8 6 12 27 31
|
cncmpmax |
|- ( ph -> ( sup ( ran G , RR , < ) e. ran G /\ sup ( ran G , RR , < ) e. RR /\ A. s e. T ( G ` s ) <_ sup ( ran G , RR , < ) ) ) |
33 |
32
|
simp2d |
|- ( ph -> sup ( ran G , RR , < ) e. RR ) |
34 |
10 33
|
eqeltrid |
|- ( ph -> N e. RR ) |
35 |
34
|
recnd |
|- ( ph -> N e. CC ) |
36 |
35
|
adantr |
|- ( ( ph /\ t e. T ) -> N e. CC ) |
37 |
|
0red |
|- ( ph -> 0 e. RR ) |
38 |
28 16
|
ffvelrnd |
|- ( ph -> ( G ` S ) e. RR ) |
39 |
13 18
|
sseldd |
|- ( ph -> F e. ( J Cn K ) ) |
40 |
6 8 21 39
|
fcnre |
|- ( ph -> F : T --> RR ) |
41 |
40 16
|
ffvelrnd |
|- ( ph -> ( F ` S ) e. RR ) |
42 |
19 20
|
neeqtrd |
|- ( ph -> ( F ` S ) =/= 0 ) |
43 |
41 42
|
msqgt0d |
|- ( ph -> 0 < ( ( F ` S ) x. ( F ` S ) ) ) |
44 |
41 41
|
remulcld |
|- ( ph -> ( ( F ` S ) x. ( F ` S ) ) e. RR ) |
45 |
|
nfcv |
|- F/_ t S |
46 |
3 45
|
nffv |
|- F/_ t ( F ` S ) |
47 |
|
nfcv |
|- F/_ t x. |
48 |
46 47 46
|
nfov |
|- F/_ t ( ( F ` S ) x. ( F ` S ) ) |
49 |
|
fveq2 |
|- ( t = S -> ( F ` t ) = ( F ` S ) ) |
50 |
49 49
|
oveq12d |
|- ( t = S -> ( ( F ` t ) x. ( F ` t ) ) = ( ( F ` S ) x. ( F ` S ) ) ) |
51 |
45 48 50 9
|
fvmptf |
|- ( ( S e. T /\ ( ( F ` S ) x. ( F ` S ) ) e. RR ) -> ( G ` S ) = ( ( F ` S ) x. ( F ` S ) ) ) |
52 |
16 44 51
|
syl2anc |
|- ( ph -> ( G ` S ) = ( ( F ` S ) x. ( F ` S ) ) ) |
53 |
43 52
|
breqtrrd |
|- ( ph -> 0 < ( G ` S ) ) |
54 |
32
|
simp3d |
|- ( ph -> A. s e. T ( G ` s ) <_ sup ( ran G , RR , < ) ) |
55 |
|
fveq2 |
|- ( s = S -> ( G ` s ) = ( G ` S ) ) |
56 |
55
|
breq1d |
|- ( s = S -> ( ( G ` s ) <_ sup ( ran G , RR , < ) <-> ( G ` S ) <_ sup ( ran G , RR , < ) ) ) |
57 |
56
|
rspccva |
|- ( ( A. s e. T ( G ` s ) <_ sup ( ran G , RR , < ) /\ S e. T ) -> ( G ` S ) <_ sup ( ran G , RR , < ) ) |
58 |
54 16 57
|
syl2anc |
|- ( ph -> ( G ` S ) <_ sup ( ran G , RR , < ) ) |
59 |
37 38 33 53 58
|
ltletrd |
|- ( ph -> 0 < sup ( ran G , RR , < ) ) |
60 |
59
|
gt0ne0d |
|- ( ph -> sup ( ran G , RR , < ) =/= 0 ) |
61 |
10
|
neeq1i |
|- ( N =/= 0 <-> sup ( ran G , RR , < ) =/= 0 ) |
62 |
60 61
|
sylibr |
|- ( ph -> N =/= 0 ) |
63 |
62
|
adantr |
|- ( ( ph /\ t e. T ) -> N =/= 0 ) |
64 |
30 36 63
|
divrecd |
|- ( ( ph /\ t e. T ) -> ( ( G ` t ) / N ) = ( ( G ` t ) x. ( 1 / N ) ) ) |
65 |
|
simpr |
|- ( ( ph /\ t e. T ) -> t e. T ) |
66 |
34 62
|
rereccld |
|- ( ph -> ( 1 / N ) e. RR ) |
67 |
66
|
adantr |
|- ( ( ph /\ t e. T ) -> ( 1 / N ) e. RR ) |
68 |
|
eqid |
|- ( t e. T |-> ( 1 / N ) ) = ( t e. T |-> ( 1 / N ) ) |
69 |
68
|
fvmpt2 |
|- ( ( t e. T /\ ( 1 / N ) e. RR ) -> ( ( t e. T |-> ( 1 / N ) ) ` t ) = ( 1 / N ) ) |
70 |
65 67 69
|
syl2anc |
|- ( ( ph /\ t e. T ) -> ( ( t e. T |-> ( 1 / N ) ) ` t ) = ( 1 / N ) ) |
71 |
70
|
oveq2d |
|- ( ( ph /\ t e. T ) -> ( ( G ` t ) x. ( ( t e. T |-> ( 1 / N ) ) ` t ) ) = ( ( G ` t ) x. ( 1 / N ) ) ) |
72 |
64 71
|
eqtr4d |
|- ( ( ph /\ t e. T ) -> ( ( G ` t ) / N ) = ( ( G ` t ) x. ( ( t e. T |-> ( 1 / N ) ) ` t ) ) ) |
73 |
5 72
|
mpteq2da |
|- ( ph -> ( t e. T |-> ( ( G ` t ) / N ) ) = ( t e. T |-> ( ( G ` t ) x. ( ( t e. T |-> ( 1 / N ) ) ` t ) ) ) ) |
74 |
11 73
|
syl5eq |
|- ( ph -> H = ( t e. T |-> ( ( G ` t ) x. ( ( t e. T |-> ( 1 / N ) ) ` t ) ) ) ) |
75 |
15
|
stoweidlem4 |
|- ( ( ph /\ ( 1 / N ) e. RR ) -> ( t e. T |-> ( 1 / N ) ) e. A ) |
76 |
66 75
|
mpdan |
|- ( ph -> ( t e. T |-> ( 1 / N ) ) e. A ) |
77 |
4
|
nfeq2 |
|- F/ t f = G |
78 |
|
nfmpt1 |
|- F/_ t ( t e. T |-> ( 1 / N ) ) |
79 |
78
|
nfeq2 |
|- F/ t g = ( t e. T |-> ( 1 / N ) ) |
80 |
77 79 14
|
stoweidlem6 |
|- ( ( ph /\ G e. A /\ ( t e. T |-> ( 1 / N ) ) e. A ) -> ( t e. T |-> ( ( G ` t ) x. ( ( t e. T |-> ( 1 / N ) ) ` t ) ) ) e. A ) |
81 |
26 76 80
|
mpd3an23 |
|- ( ph -> ( t e. T |-> ( ( G ` t ) x. ( ( t e. T |-> ( 1 / N ) ) ` t ) ) ) e. A ) |
82 |
74 81
|
eqeltrd |
|- ( ph -> H e. A ) |
83 |
28 17
|
ffvelrnd |
|- ( ph -> ( G ` Z ) e. RR ) |
84 |
83 34 62
|
redivcld |
|- ( ph -> ( ( G ` Z ) / N ) e. RR ) |
85 |
|
nfcv |
|- F/_ t Z |
86 |
4 85
|
nffv |
|- F/_ t ( G ` Z ) |
87 |
|
nfcv |
|- F/_ t / |
88 |
|
nfcv |
|- F/_ t N |
89 |
86 87 88
|
nfov |
|- F/_ t ( ( G ` Z ) / N ) |
90 |
|
fveq2 |
|- ( t = Z -> ( G ` t ) = ( G ` Z ) ) |
91 |
90
|
oveq1d |
|- ( t = Z -> ( ( G ` t ) / N ) = ( ( G ` Z ) / N ) ) |
92 |
85 89 91 11
|
fvmptf |
|- ( ( Z e. T /\ ( ( G ` Z ) / N ) e. RR ) -> ( H ` Z ) = ( ( G ` Z ) / N ) ) |
93 |
17 84 92
|
syl2anc |
|- ( ph -> ( H ` Z ) = ( ( G ` Z ) / N ) ) |
94 |
|
0re |
|- 0 e. RR |
95 |
20 94
|
eqeltrdi |
|- ( ph -> ( F ` Z ) e. RR ) |
96 |
95 95
|
remulcld |
|- ( ph -> ( ( F ` Z ) x. ( F ` Z ) ) e. RR ) |
97 |
3 85
|
nffv |
|- F/_ t ( F ` Z ) |
98 |
97 47 97
|
nfov |
|- F/_ t ( ( F ` Z ) x. ( F ` Z ) ) |
99 |
|
fveq2 |
|- ( t = Z -> ( F ` t ) = ( F ` Z ) ) |
100 |
99 99
|
oveq12d |
|- ( t = Z -> ( ( F ` t ) x. ( F ` t ) ) = ( ( F ` Z ) x. ( F ` Z ) ) ) |
101 |
85 98 100 9
|
fvmptf |
|- ( ( Z e. T /\ ( ( F ` Z ) x. ( F ` Z ) ) e. RR ) -> ( G ` Z ) = ( ( F ` Z ) x. ( F ` Z ) ) ) |
102 |
17 96 101
|
syl2anc |
|- ( ph -> ( G ` Z ) = ( ( F ` Z ) x. ( F ` Z ) ) ) |
103 |
20 20
|
oveq12d |
|- ( ph -> ( ( F ` Z ) x. ( F ` Z ) ) = ( 0 x. 0 ) ) |
104 |
|
0cn |
|- 0 e. CC |
105 |
104
|
mul02i |
|- ( 0 x. 0 ) = 0 |
106 |
103 105
|
eqtrdi |
|- ( ph -> ( ( F ` Z ) x. ( F ` Z ) ) = 0 ) |
107 |
102 106
|
eqtrd |
|- ( ph -> ( G ` Z ) = 0 ) |
108 |
107
|
oveq1d |
|- ( ph -> ( ( G ` Z ) / N ) = ( 0 / N ) ) |
109 |
35 62
|
div0d |
|- ( ph -> ( 0 / N ) = 0 ) |
110 |
93 108 109
|
3eqtrd |
|- ( ph -> ( H ` Z ) = 0 ) |
111 |
40
|
ffvelrnda |
|- ( ( ph /\ t e. T ) -> ( F ` t ) e. RR ) |
112 |
111
|
msqge0d |
|- ( ( ph /\ t e. T ) -> 0 <_ ( ( F ` t ) x. ( F ` t ) ) ) |
113 |
111 111
|
remulcld |
|- ( ( ph /\ t e. T ) -> ( ( F ` t ) x. ( F ` t ) ) e. RR ) |
114 |
9
|
fvmpt2 |
|- ( ( t e. T /\ ( ( F ` t ) x. ( F ` t ) ) e. RR ) -> ( G ` t ) = ( ( F ` t ) x. ( F ` t ) ) ) |
115 |
65 113 114
|
syl2anc |
|- ( ( ph /\ t e. T ) -> ( G ` t ) = ( ( F ` t ) x. ( F ` t ) ) ) |
116 |
112 115
|
breqtrrd |
|- ( ( ph /\ t e. T ) -> 0 <_ ( G ` t ) ) |
117 |
34
|
adantr |
|- ( ( ph /\ t e. T ) -> N e. RR ) |
118 |
59 10
|
breqtrrdi |
|- ( ph -> 0 < N ) |
119 |
118
|
adantr |
|- ( ( ph /\ t e. T ) -> 0 < N ) |
120 |
|
divge0 |
|- ( ( ( ( G ` t ) e. RR /\ 0 <_ ( G ` t ) ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( ( G ` t ) / N ) ) |
121 |
29 116 117 119 120
|
syl22anc |
|- ( ( ph /\ t e. T ) -> 0 <_ ( ( G ` t ) / N ) ) |
122 |
29 117 63
|
redivcld |
|- ( ( ph /\ t e. T ) -> ( ( G ` t ) / N ) e. RR ) |
123 |
11
|
fvmpt2 |
|- ( ( t e. T /\ ( ( G ` t ) / N ) e. RR ) -> ( H ` t ) = ( ( G ` t ) / N ) ) |
124 |
65 122 123
|
syl2anc |
|- ( ( ph /\ t e. T ) -> ( H ` t ) = ( ( G ` t ) / N ) ) |
125 |
121 124
|
breqtrrd |
|- ( ( ph /\ t e. T ) -> 0 <_ ( H ` t ) ) |
126 |
30
|
div1d |
|- ( ( ph /\ t e. T ) -> ( ( G ` t ) / 1 ) = ( G ` t ) ) |
127 |
|
fveq2 |
|- ( s = t -> ( G ` s ) = ( G ` t ) ) |
128 |
127
|
breq1d |
|- ( s = t -> ( ( G ` s ) <_ sup ( ran G , RR , < ) <-> ( G ` t ) <_ sup ( ran G , RR , < ) ) ) |
129 |
128
|
rspccva |
|- ( ( A. s e. T ( G ` s ) <_ sup ( ran G , RR , < ) /\ t e. T ) -> ( G ` t ) <_ sup ( ran G , RR , < ) ) |
130 |
54 129
|
sylan |
|- ( ( ph /\ t e. T ) -> ( G ` t ) <_ sup ( ran G , RR , < ) ) |
131 |
130 10
|
breqtrrdi |
|- ( ( ph /\ t e. T ) -> ( G ` t ) <_ N ) |
132 |
126 131
|
eqbrtrd |
|- ( ( ph /\ t e. T ) -> ( ( G ` t ) / 1 ) <_ N ) |
133 |
|
1red |
|- ( ( ph /\ t e. T ) -> 1 e. RR ) |
134 |
|
0lt1 |
|- 0 < 1 |
135 |
134
|
a1i |
|- ( ( ph /\ t e. T ) -> 0 < 1 ) |
136 |
|
lediv23 |
|- ( ( ( G ` t ) e. RR /\ ( N e. RR /\ 0 < N ) /\ ( 1 e. RR /\ 0 < 1 ) ) -> ( ( ( G ` t ) / N ) <_ 1 <-> ( ( G ` t ) / 1 ) <_ N ) ) |
137 |
29 117 119 133 135 136
|
syl122anc |
|- ( ( ph /\ t e. T ) -> ( ( ( G ` t ) / N ) <_ 1 <-> ( ( G ` t ) / 1 ) <_ N ) ) |
138 |
132 137
|
mpbird |
|- ( ( ph /\ t e. T ) -> ( ( G ` t ) / N ) <_ 1 ) |
139 |
124 138
|
eqbrtrd |
|- ( ( ph /\ t e. T ) -> ( H ` t ) <_ 1 ) |
140 |
125 139
|
jca |
|- ( ( ph /\ t e. T ) -> ( 0 <_ ( H ` t ) /\ ( H ` t ) <_ 1 ) ) |
141 |
140
|
ex |
|- ( ph -> ( t e. T -> ( 0 <_ ( H ` t ) /\ ( H ` t ) <_ 1 ) ) ) |
142 |
5 141
|
ralrimi |
|- ( ph -> A. t e. T ( 0 <_ ( H ` t ) /\ ( H ` t ) <_ 1 ) ) |
143 |
110 142
|
jca |
|- ( ph -> ( ( H ` Z ) = 0 /\ A. t e. T ( 0 <_ ( H ` t ) /\ ( H ` t ) <_ 1 ) ) ) |
144 |
|
fveq1 |
|- ( h = H -> ( h ` Z ) = ( H ` Z ) ) |
145 |
144
|
eqeq1d |
|- ( h = H -> ( ( h ` Z ) = 0 <-> ( H ` Z ) = 0 ) ) |
146 |
2
|
nfeq2 |
|- F/ t h = H |
147 |
|
fveq1 |
|- ( h = H -> ( h ` t ) = ( H ` t ) ) |
148 |
147
|
breq2d |
|- ( h = H -> ( 0 <_ ( h ` t ) <-> 0 <_ ( H ` t ) ) ) |
149 |
147
|
breq1d |
|- ( h = H -> ( ( h ` t ) <_ 1 <-> ( H ` t ) <_ 1 ) ) |
150 |
148 149
|
anbi12d |
|- ( h = H -> ( ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) <-> ( 0 <_ ( H ` t ) /\ ( H ` t ) <_ 1 ) ) ) |
151 |
146 150
|
ralbid |
|- ( h = H -> ( A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) <-> A. t e. T ( 0 <_ ( H ` t ) /\ ( H ` t ) <_ 1 ) ) ) |
152 |
145 151
|
anbi12d |
|- ( h = H -> ( ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) <-> ( ( H ` Z ) = 0 /\ A. t e. T ( 0 <_ ( H ` t ) /\ ( H ` t ) <_ 1 ) ) ) ) |
153 |
152
|
elrab |
|- ( H e. { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) } <-> ( H e. A /\ ( ( H ` Z ) = 0 /\ A. t e. T ( 0 <_ ( H ` t ) /\ ( H ` t ) <_ 1 ) ) ) ) |
154 |
82 143 153
|
sylanbrc |
|- ( ph -> H e. { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) } ) |
155 |
154 7
|
eleqtrrdi |
|- ( ph -> H e. Q ) |
156 |
38 34 53 118
|
divgt0d |
|- ( ph -> 0 < ( ( G ` S ) / N ) ) |
157 |
38 34 62
|
redivcld |
|- ( ph -> ( ( G ` S ) / N ) e. RR ) |
158 |
4 45
|
nffv |
|- F/_ t ( G ` S ) |
159 |
158 87 88
|
nfov |
|- F/_ t ( ( G ` S ) / N ) |
160 |
|
fveq2 |
|- ( t = S -> ( G ` t ) = ( G ` S ) ) |
161 |
160
|
oveq1d |
|- ( t = S -> ( ( G ` t ) / N ) = ( ( G ` S ) / N ) ) |
162 |
45 159 161 11
|
fvmptf |
|- ( ( S e. T /\ ( ( G ` S ) / N ) e. RR ) -> ( H ` S ) = ( ( G ` S ) / N ) ) |
163 |
16 157 162
|
syl2anc |
|- ( ph -> ( H ` S ) = ( ( G ` S ) / N ) ) |
164 |
156 163
|
breqtrrd |
|- ( ph -> 0 < ( H ` S ) ) |
165 |
|
nfcv |
|- F/_ h H |
166 |
1
|
nfel2 |
|- F/ h H e. Q |
167 |
|
nfv |
|- F/ h 0 < ( H ` S ) |
168 |
166 167
|
nfan |
|- F/ h ( H e. Q /\ 0 < ( H ` S ) ) |
169 |
|
eleq1 |
|- ( h = H -> ( h e. Q <-> H e. Q ) ) |
170 |
|
fveq1 |
|- ( h = H -> ( h ` S ) = ( H ` S ) ) |
171 |
170
|
breq2d |
|- ( h = H -> ( 0 < ( h ` S ) <-> 0 < ( H ` S ) ) ) |
172 |
169 171
|
anbi12d |
|- ( h = H -> ( ( h e. Q /\ 0 < ( h ` S ) ) <-> ( H e. Q /\ 0 < ( H ` S ) ) ) ) |
173 |
165 168 172
|
spcegf |
|- ( H e. Q -> ( ( H e. Q /\ 0 < ( H ` S ) ) -> E. h ( h e. Q /\ 0 < ( h ` S ) ) ) ) |
174 |
173
|
anabsi5 |
|- ( ( H e. Q /\ 0 < ( H ` S ) ) -> E. h ( h e. Q /\ 0 < ( h ` S ) ) ) |
175 |
155 164 174
|
syl2anc |
|- ( ph -> E. h ( h e. Q /\ 0 < ( h ` S ) ) ) |