Metamath Proof Explorer


Theorem stoweidlem36

Description: This lemma is used to prove the existence of a function p_t as in Lemma 1 of BrosowskiDeutsh p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function p in the subalgebra, such that p_t ( t_0 ) = 0 , p_t ( t ) > 0, and 0 <= p_t <= 1. Z is used for t_0 , S is used for t e. T - U , h is used for p_t . G is used for (h_t)^2 and the final h is a normalized version of G ( divided by its norm, see the variable N ). (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem36.1
|- F/_ h Q
stoweidlem36.2
|- F/_ t H
stoweidlem36.3
|- F/_ t F
stoweidlem36.4
|- F/_ t G
stoweidlem36.5
|- F/ t ph
stoweidlem36.6
|- K = ( topGen ` ran (,) )
stoweidlem36.7
|- Q = { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) }
stoweidlem36.8
|- T = U. J
stoweidlem36.9
|- G = ( t e. T |-> ( ( F ` t ) x. ( F ` t ) ) )
stoweidlem36.10
|- N = sup ( ran G , RR , < )
stoweidlem36.11
|- H = ( t e. T |-> ( ( G ` t ) / N ) )
stoweidlem36.12
|- ( ph -> J e. Comp )
stoweidlem36.13
|- ( ph -> A C_ ( J Cn K ) )
stoweidlem36.14
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A )
stoweidlem36.15
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A )
stoweidlem36.16
|- ( ph -> S e. T )
stoweidlem36.17
|- ( ph -> Z e. T )
stoweidlem36.18
|- ( ph -> F e. A )
stoweidlem36.19
|- ( ph -> ( F ` S ) =/= ( F ` Z ) )
stoweidlem36.20
|- ( ph -> ( F ` Z ) = 0 )
Assertion stoweidlem36
|- ( ph -> E. h ( h e. Q /\ 0 < ( h ` S ) ) )

Proof

Step Hyp Ref Expression
1 stoweidlem36.1
 |-  F/_ h Q
2 stoweidlem36.2
 |-  F/_ t H
3 stoweidlem36.3
 |-  F/_ t F
4 stoweidlem36.4
 |-  F/_ t G
5 stoweidlem36.5
 |-  F/ t ph
6 stoweidlem36.6
 |-  K = ( topGen ` ran (,) )
7 stoweidlem36.7
 |-  Q = { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) }
8 stoweidlem36.8
 |-  T = U. J
9 stoweidlem36.9
 |-  G = ( t e. T |-> ( ( F ` t ) x. ( F ` t ) ) )
10 stoweidlem36.10
 |-  N = sup ( ran G , RR , < )
11 stoweidlem36.11
 |-  H = ( t e. T |-> ( ( G ` t ) / N ) )
12 stoweidlem36.12
 |-  ( ph -> J e. Comp )
13 stoweidlem36.13
 |-  ( ph -> A C_ ( J Cn K ) )
14 stoweidlem36.14
 |-  ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A )
15 stoweidlem36.15
 |-  ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A )
16 stoweidlem36.16
 |-  ( ph -> S e. T )
17 stoweidlem36.17
 |-  ( ph -> Z e. T )
18 stoweidlem36.18
 |-  ( ph -> F e. A )
19 stoweidlem36.19
 |-  ( ph -> ( F ` S ) =/= ( F ` Z ) )
20 stoweidlem36.20
 |-  ( ph -> ( F ` Z ) = 0 )
21 eqid
 |-  ( J Cn K ) = ( J Cn K )
22 3 nfeq2
 |-  F/ t f = F
23 3 nfeq2
 |-  F/ t g = F
24 22 23 14 stoweidlem6
 |-  ( ( ph /\ F e. A /\ F e. A ) -> ( t e. T |-> ( ( F ` t ) x. ( F ` t ) ) ) e. A )
25 18 18 24 mpd3an23
 |-  ( ph -> ( t e. T |-> ( ( F ` t ) x. ( F ` t ) ) ) e. A )
26 9 25 eqeltrid
 |-  ( ph -> G e. A )
27 13 26 sseldd
 |-  ( ph -> G e. ( J Cn K ) )
28 6 8 21 27 fcnre
 |-  ( ph -> G : T --> RR )
29 28 ffvelrnda
 |-  ( ( ph /\ t e. T ) -> ( G ` t ) e. RR )
30 29 recnd
 |-  ( ( ph /\ t e. T ) -> ( G ` t ) e. CC )
31 16 ne0d
 |-  ( ph -> T =/= (/) )
32 8 6 12 27 31 cncmpmax
 |-  ( ph -> ( sup ( ran G , RR , < ) e. ran G /\ sup ( ran G , RR , < ) e. RR /\ A. s e. T ( G ` s ) <_ sup ( ran G , RR , < ) ) )
33 32 simp2d
 |-  ( ph -> sup ( ran G , RR , < ) e. RR )
34 10 33 eqeltrid
 |-  ( ph -> N e. RR )
35 34 recnd
 |-  ( ph -> N e. CC )
36 35 adantr
 |-  ( ( ph /\ t e. T ) -> N e. CC )
37 0red
 |-  ( ph -> 0 e. RR )
38 28 16 ffvelrnd
 |-  ( ph -> ( G ` S ) e. RR )
39 13 18 sseldd
 |-  ( ph -> F e. ( J Cn K ) )
40 6 8 21 39 fcnre
 |-  ( ph -> F : T --> RR )
41 40 16 ffvelrnd
 |-  ( ph -> ( F ` S ) e. RR )
42 19 20 neeqtrd
 |-  ( ph -> ( F ` S ) =/= 0 )
43 41 42 msqgt0d
 |-  ( ph -> 0 < ( ( F ` S ) x. ( F ` S ) ) )
44 41 41 remulcld
 |-  ( ph -> ( ( F ` S ) x. ( F ` S ) ) e. RR )
45 nfcv
 |-  F/_ t S
46 3 45 nffv
 |-  F/_ t ( F ` S )
47 nfcv
 |-  F/_ t x.
48 46 47 46 nfov
 |-  F/_ t ( ( F ` S ) x. ( F ` S ) )
49 fveq2
 |-  ( t = S -> ( F ` t ) = ( F ` S ) )
50 49 49 oveq12d
 |-  ( t = S -> ( ( F ` t ) x. ( F ` t ) ) = ( ( F ` S ) x. ( F ` S ) ) )
51 45 48 50 9 fvmptf
 |-  ( ( S e. T /\ ( ( F ` S ) x. ( F ` S ) ) e. RR ) -> ( G ` S ) = ( ( F ` S ) x. ( F ` S ) ) )
52 16 44 51 syl2anc
 |-  ( ph -> ( G ` S ) = ( ( F ` S ) x. ( F ` S ) ) )
53 43 52 breqtrrd
 |-  ( ph -> 0 < ( G ` S ) )
54 32 simp3d
 |-  ( ph -> A. s e. T ( G ` s ) <_ sup ( ran G , RR , < ) )
55 fveq2
 |-  ( s = S -> ( G ` s ) = ( G ` S ) )
56 55 breq1d
 |-  ( s = S -> ( ( G ` s ) <_ sup ( ran G , RR , < ) <-> ( G ` S ) <_ sup ( ran G , RR , < ) ) )
57 56 rspccva
 |-  ( ( A. s e. T ( G ` s ) <_ sup ( ran G , RR , < ) /\ S e. T ) -> ( G ` S ) <_ sup ( ran G , RR , < ) )
58 54 16 57 syl2anc
 |-  ( ph -> ( G ` S ) <_ sup ( ran G , RR , < ) )
59 37 38 33 53 58 ltletrd
 |-  ( ph -> 0 < sup ( ran G , RR , < ) )
60 59 gt0ne0d
 |-  ( ph -> sup ( ran G , RR , < ) =/= 0 )
61 10 neeq1i
 |-  ( N =/= 0 <-> sup ( ran G , RR , < ) =/= 0 )
62 60 61 sylibr
 |-  ( ph -> N =/= 0 )
63 62 adantr
 |-  ( ( ph /\ t e. T ) -> N =/= 0 )
64 30 36 63 divrecd
 |-  ( ( ph /\ t e. T ) -> ( ( G ` t ) / N ) = ( ( G ` t ) x. ( 1 / N ) ) )
65 simpr
 |-  ( ( ph /\ t e. T ) -> t e. T )
66 34 62 rereccld
 |-  ( ph -> ( 1 / N ) e. RR )
67 66 adantr
 |-  ( ( ph /\ t e. T ) -> ( 1 / N ) e. RR )
68 eqid
 |-  ( t e. T |-> ( 1 / N ) ) = ( t e. T |-> ( 1 / N ) )
69 68 fvmpt2
 |-  ( ( t e. T /\ ( 1 / N ) e. RR ) -> ( ( t e. T |-> ( 1 / N ) ) ` t ) = ( 1 / N ) )
70 65 67 69 syl2anc
 |-  ( ( ph /\ t e. T ) -> ( ( t e. T |-> ( 1 / N ) ) ` t ) = ( 1 / N ) )
71 70 oveq2d
 |-  ( ( ph /\ t e. T ) -> ( ( G ` t ) x. ( ( t e. T |-> ( 1 / N ) ) ` t ) ) = ( ( G ` t ) x. ( 1 / N ) ) )
72 64 71 eqtr4d
 |-  ( ( ph /\ t e. T ) -> ( ( G ` t ) / N ) = ( ( G ` t ) x. ( ( t e. T |-> ( 1 / N ) ) ` t ) ) )
73 5 72 mpteq2da
 |-  ( ph -> ( t e. T |-> ( ( G ` t ) / N ) ) = ( t e. T |-> ( ( G ` t ) x. ( ( t e. T |-> ( 1 / N ) ) ` t ) ) ) )
74 11 73 syl5eq
 |-  ( ph -> H = ( t e. T |-> ( ( G ` t ) x. ( ( t e. T |-> ( 1 / N ) ) ` t ) ) ) )
75 15 stoweidlem4
 |-  ( ( ph /\ ( 1 / N ) e. RR ) -> ( t e. T |-> ( 1 / N ) ) e. A )
76 66 75 mpdan
 |-  ( ph -> ( t e. T |-> ( 1 / N ) ) e. A )
77 4 nfeq2
 |-  F/ t f = G
78 nfmpt1
 |-  F/_ t ( t e. T |-> ( 1 / N ) )
79 78 nfeq2
 |-  F/ t g = ( t e. T |-> ( 1 / N ) )
80 77 79 14 stoweidlem6
 |-  ( ( ph /\ G e. A /\ ( t e. T |-> ( 1 / N ) ) e. A ) -> ( t e. T |-> ( ( G ` t ) x. ( ( t e. T |-> ( 1 / N ) ) ` t ) ) ) e. A )
81 26 76 80 mpd3an23
 |-  ( ph -> ( t e. T |-> ( ( G ` t ) x. ( ( t e. T |-> ( 1 / N ) ) ` t ) ) ) e. A )
82 74 81 eqeltrd
 |-  ( ph -> H e. A )
83 28 17 ffvelrnd
 |-  ( ph -> ( G ` Z ) e. RR )
84 83 34 62 redivcld
 |-  ( ph -> ( ( G ` Z ) / N ) e. RR )
85 nfcv
 |-  F/_ t Z
86 4 85 nffv
 |-  F/_ t ( G ` Z )
87 nfcv
 |-  F/_ t /
88 nfcv
 |-  F/_ t N
89 86 87 88 nfov
 |-  F/_ t ( ( G ` Z ) / N )
90 fveq2
 |-  ( t = Z -> ( G ` t ) = ( G ` Z ) )
91 90 oveq1d
 |-  ( t = Z -> ( ( G ` t ) / N ) = ( ( G ` Z ) / N ) )
92 85 89 91 11 fvmptf
 |-  ( ( Z e. T /\ ( ( G ` Z ) / N ) e. RR ) -> ( H ` Z ) = ( ( G ` Z ) / N ) )
93 17 84 92 syl2anc
 |-  ( ph -> ( H ` Z ) = ( ( G ` Z ) / N ) )
94 0re
 |-  0 e. RR
95 20 94 eqeltrdi
 |-  ( ph -> ( F ` Z ) e. RR )
96 95 95 remulcld
 |-  ( ph -> ( ( F ` Z ) x. ( F ` Z ) ) e. RR )
97 3 85 nffv
 |-  F/_ t ( F ` Z )
98 97 47 97 nfov
 |-  F/_ t ( ( F ` Z ) x. ( F ` Z ) )
99 fveq2
 |-  ( t = Z -> ( F ` t ) = ( F ` Z ) )
100 99 99 oveq12d
 |-  ( t = Z -> ( ( F ` t ) x. ( F ` t ) ) = ( ( F ` Z ) x. ( F ` Z ) ) )
101 85 98 100 9 fvmptf
 |-  ( ( Z e. T /\ ( ( F ` Z ) x. ( F ` Z ) ) e. RR ) -> ( G ` Z ) = ( ( F ` Z ) x. ( F ` Z ) ) )
102 17 96 101 syl2anc
 |-  ( ph -> ( G ` Z ) = ( ( F ` Z ) x. ( F ` Z ) ) )
103 20 20 oveq12d
 |-  ( ph -> ( ( F ` Z ) x. ( F ` Z ) ) = ( 0 x. 0 ) )
104 0cn
 |-  0 e. CC
105 104 mul02i
 |-  ( 0 x. 0 ) = 0
106 103 105 eqtrdi
 |-  ( ph -> ( ( F ` Z ) x. ( F ` Z ) ) = 0 )
107 102 106 eqtrd
 |-  ( ph -> ( G ` Z ) = 0 )
108 107 oveq1d
 |-  ( ph -> ( ( G ` Z ) / N ) = ( 0 / N ) )
109 35 62 div0d
 |-  ( ph -> ( 0 / N ) = 0 )
110 93 108 109 3eqtrd
 |-  ( ph -> ( H ` Z ) = 0 )
111 40 ffvelrnda
 |-  ( ( ph /\ t e. T ) -> ( F ` t ) e. RR )
112 111 msqge0d
 |-  ( ( ph /\ t e. T ) -> 0 <_ ( ( F ` t ) x. ( F ` t ) ) )
113 111 111 remulcld
 |-  ( ( ph /\ t e. T ) -> ( ( F ` t ) x. ( F ` t ) ) e. RR )
114 9 fvmpt2
 |-  ( ( t e. T /\ ( ( F ` t ) x. ( F ` t ) ) e. RR ) -> ( G ` t ) = ( ( F ` t ) x. ( F ` t ) ) )
115 65 113 114 syl2anc
 |-  ( ( ph /\ t e. T ) -> ( G ` t ) = ( ( F ` t ) x. ( F ` t ) ) )
116 112 115 breqtrrd
 |-  ( ( ph /\ t e. T ) -> 0 <_ ( G ` t ) )
117 34 adantr
 |-  ( ( ph /\ t e. T ) -> N e. RR )
118 59 10 breqtrrdi
 |-  ( ph -> 0 < N )
119 118 adantr
 |-  ( ( ph /\ t e. T ) -> 0 < N )
120 divge0
 |-  ( ( ( ( G ` t ) e. RR /\ 0 <_ ( G ` t ) ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( ( G ` t ) / N ) )
121 29 116 117 119 120 syl22anc
 |-  ( ( ph /\ t e. T ) -> 0 <_ ( ( G ` t ) / N ) )
122 29 117 63 redivcld
 |-  ( ( ph /\ t e. T ) -> ( ( G ` t ) / N ) e. RR )
123 11 fvmpt2
 |-  ( ( t e. T /\ ( ( G ` t ) / N ) e. RR ) -> ( H ` t ) = ( ( G ` t ) / N ) )
124 65 122 123 syl2anc
 |-  ( ( ph /\ t e. T ) -> ( H ` t ) = ( ( G ` t ) / N ) )
125 121 124 breqtrrd
 |-  ( ( ph /\ t e. T ) -> 0 <_ ( H ` t ) )
126 30 div1d
 |-  ( ( ph /\ t e. T ) -> ( ( G ` t ) / 1 ) = ( G ` t ) )
127 fveq2
 |-  ( s = t -> ( G ` s ) = ( G ` t ) )
128 127 breq1d
 |-  ( s = t -> ( ( G ` s ) <_ sup ( ran G , RR , < ) <-> ( G ` t ) <_ sup ( ran G , RR , < ) ) )
129 128 rspccva
 |-  ( ( A. s e. T ( G ` s ) <_ sup ( ran G , RR , < ) /\ t e. T ) -> ( G ` t ) <_ sup ( ran G , RR , < ) )
130 54 129 sylan
 |-  ( ( ph /\ t e. T ) -> ( G ` t ) <_ sup ( ran G , RR , < ) )
131 130 10 breqtrrdi
 |-  ( ( ph /\ t e. T ) -> ( G ` t ) <_ N )
132 126 131 eqbrtrd
 |-  ( ( ph /\ t e. T ) -> ( ( G ` t ) / 1 ) <_ N )
133 1red
 |-  ( ( ph /\ t e. T ) -> 1 e. RR )
134 0lt1
 |-  0 < 1
135 134 a1i
 |-  ( ( ph /\ t e. T ) -> 0 < 1 )
136 lediv23
 |-  ( ( ( G ` t ) e. RR /\ ( N e. RR /\ 0 < N ) /\ ( 1 e. RR /\ 0 < 1 ) ) -> ( ( ( G ` t ) / N ) <_ 1 <-> ( ( G ` t ) / 1 ) <_ N ) )
137 29 117 119 133 135 136 syl122anc
 |-  ( ( ph /\ t e. T ) -> ( ( ( G ` t ) / N ) <_ 1 <-> ( ( G ` t ) / 1 ) <_ N ) )
138 132 137 mpbird
 |-  ( ( ph /\ t e. T ) -> ( ( G ` t ) / N ) <_ 1 )
139 124 138 eqbrtrd
 |-  ( ( ph /\ t e. T ) -> ( H ` t ) <_ 1 )
140 125 139 jca
 |-  ( ( ph /\ t e. T ) -> ( 0 <_ ( H ` t ) /\ ( H ` t ) <_ 1 ) )
141 140 ex
 |-  ( ph -> ( t e. T -> ( 0 <_ ( H ` t ) /\ ( H ` t ) <_ 1 ) ) )
142 5 141 ralrimi
 |-  ( ph -> A. t e. T ( 0 <_ ( H ` t ) /\ ( H ` t ) <_ 1 ) )
143 110 142 jca
 |-  ( ph -> ( ( H ` Z ) = 0 /\ A. t e. T ( 0 <_ ( H ` t ) /\ ( H ` t ) <_ 1 ) ) )
144 fveq1
 |-  ( h = H -> ( h ` Z ) = ( H ` Z ) )
145 144 eqeq1d
 |-  ( h = H -> ( ( h ` Z ) = 0 <-> ( H ` Z ) = 0 ) )
146 2 nfeq2
 |-  F/ t h = H
147 fveq1
 |-  ( h = H -> ( h ` t ) = ( H ` t ) )
148 147 breq2d
 |-  ( h = H -> ( 0 <_ ( h ` t ) <-> 0 <_ ( H ` t ) ) )
149 147 breq1d
 |-  ( h = H -> ( ( h ` t ) <_ 1 <-> ( H ` t ) <_ 1 ) )
150 148 149 anbi12d
 |-  ( h = H -> ( ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) <-> ( 0 <_ ( H ` t ) /\ ( H ` t ) <_ 1 ) ) )
151 146 150 ralbid
 |-  ( h = H -> ( A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) <-> A. t e. T ( 0 <_ ( H ` t ) /\ ( H ` t ) <_ 1 ) ) )
152 145 151 anbi12d
 |-  ( h = H -> ( ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) <-> ( ( H ` Z ) = 0 /\ A. t e. T ( 0 <_ ( H ` t ) /\ ( H ` t ) <_ 1 ) ) ) )
153 152 elrab
 |-  ( H e. { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) } <-> ( H e. A /\ ( ( H ` Z ) = 0 /\ A. t e. T ( 0 <_ ( H ` t ) /\ ( H ` t ) <_ 1 ) ) ) )
154 82 143 153 sylanbrc
 |-  ( ph -> H e. { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) } )
155 154 7 eleqtrrdi
 |-  ( ph -> H e. Q )
156 38 34 53 118 divgt0d
 |-  ( ph -> 0 < ( ( G ` S ) / N ) )
157 38 34 62 redivcld
 |-  ( ph -> ( ( G ` S ) / N ) e. RR )
158 4 45 nffv
 |-  F/_ t ( G ` S )
159 158 87 88 nfov
 |-  F/_ t ( ( G ` S ) / N )
160 fveq2
 |-  ( t = S -> ( G ` t ) = ( G ` S ) )
161 160 oveq1d
 |-  ( t = S -> ( ( G ` t ) / N ) = ( ( G ` S ) / N ) )
162 45 159 161 11 fvmptf
 |-  ( ( S e. T /\ ( ( G ` S ) / N ) e. RR ) -> ( H ` S ) = ( ( G ` S ) / N ) )
163 16 157 162 syl2anc
 |-  ( ph -> ( H ` S ) = ( ( G ` S ) / N ) )
164 156 163 breqtrrd
 |-  ( ph -> 0 < ( H ` S ) )
165 nfcv
 |-  F/_ h H
166 1 nfel2
 |-  F/ h H e. Q
167 nfv
 |-  F/ h 0 < ( H ` S )
168 166 167 nfan
 |-  F/ h ( H e. Q /\ 0 < ( H ` S ) )
169 eleq1
 |-  ( h = H -> ( h e. Q <-> H e. Q ) )
170 fveq1
 |-  ( h = H -> ( h ` S ) = ( H ` S ) )
171 170 breq2d
 |-  ( h = H -> ( 0 < ( h ` S ) <-> 0 < ( H ` S ) ) )
172 169 171 anbi12d
 |-  ( h = H -> ( ( h e. Q /\ 0 < ( h ` S ) ) <-> ( H e. Q /\ 0 < ( H ` S ) ) ) )
173 165 168 172 spcegf
 |-  ( H e. Q -> ( ( H e. Q /\ 0 < ( H ` S ) ) -> E. h ( h e. Q /\ 0 < ( h ` S ) ) ) )
174 173 anabsi5
 |-  ( ( H e. Q /\ 0 < ( H ` S ) ) -> E. h ( h e. Q /\ 0 < ( h ` S ) ) )
175 155 164 174 syl2anc
 |-  ( ph -> E. h ( h e. Q /\ 0 < ( h ` S ) ) )