Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem37.1 |
|- Q = { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) } |
2 |
|
stoweidlem37.2 |
|- P = ( t e. T |-> ( ( 1 / M ) x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` t ) ) ) |
3 |
|
stoweidlem37.3 |
|- ( ph -> M e. NN ) |
4 |
|
stoweidlem37.4 |
|- ( ph -> G : ( 1 ... M ) --> Q ) |
5 |
|
stoweidlem37.5 |
|- ( ( ph /\ f e. A ) -> f : T --> RR ) |
6 |
|
stoweidlem37.6 |
|- ( ph -> Z e. T ) |
7 |
1 2 3 4 5
|
stoweidlem30 |
|- ( ( ph /\ Z e. T ) -> ( P ` Z ) = ( ( 1 / M ) x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` Z ) ) ) |
8 |
6 7
|
mpdan |
|- ( ph -> ( P ` Z ) = ( ( 1 / M ) x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` Z ) ) ) |
9 |
4
|
ffvelrnda |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( G ` i ) e. Q ) |
10 |
|
fveq1 |
|- ( h = ( G ` i ) -> ( h ` Z ) = ( ( G ` i ) ` Z ) ) |
11 |
10
|
eqeq1d |
|- ( h = ( G ` i ) -> ( ( h ` Z ) = 0 <-> ( ( G ` i ) ` Z ) = 0 ) ) |
12 |
|
fveq1 |
|- ( h = ( G ` i ) -> ( h ` t ) = ( ( G ` i ) ` t ) ) |
13 |
12
|
breq2d |
|- ( h = ( G ` i ) -> ( 0 <_ ( h ` t ) <-> 0 <_ ( ( G ` i ) ` t ) ) ) |
14 |
12
|
breq1d |
|- ( h = ( G ` i ) -> ( ( h ` t ) <_ 1 <-> ( ( G ` i ) ` t ) <_ 1 ) ) |
15 |
13 14
|
anbi12d |
|- ( h = ( G ` i ) -> ( ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) <-> ( 0 <_ ( ( G ` i ) ` t ) /\ ( ( G ` i ) ` t ) <_ 1 ) ) ) |
16 |
15
|
ralbidv |
|- ( h = ( G ` i ) -> ( A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) <-> A. t e. T ( 0 <_ ( ( G ` i ) ` t ) /\ ( ( G ` i ) ` t ) <_ 1 ) ) ) |
17 |
11 16
|
anbi12d |
|- ( h = ( G ` i ) -> ( ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) <-> ( ( ( G ` i ) ` Z ) = 0 /\ A. t e. T ( 0 <_ ( ( G ` i ) ` t ) /\ ( ( G ` i ) ` t ) <_ 1 ) ) ) ) |
18 |
17 1
|
elrab2 |
|- ( ( G ` i ) e. Q <-> ( ( G ` i ) e. A /\ ( ( ( G ` i ) ` Z ) = 0 /\ A. t e. T ( 0 <_ ( ( G ` i ) ` t ) /\ ( ( G ` i ) ` t ) <_ 1 ) ) ) ) |
19 |
9 18
|
sylib |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( G ` i ) e. A /\ ( ( ( G ` i ) ` Z ) = 0 /\ A. t e. T ( 0 <_ ( ( G ` i ) ` t ) /\ ( ( G ` i ) ` t ) <_ 1 ) ) ) ) |
20 |
19
|
simprld |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( G ` i ) ` Z ) = 0 ) |
21 |
20
|
sumeq2dv |
|- ( ph -> sum_ i e. ( 1 ... M ) ( ( G ` i ) ` Z ) = sum_ i e. ( 1 ... M ) 0 ) |
22 |
|
fzfi |
|- ( 1 ... M ) e. Fin |
23 |
|
olc |
|- ( ( 1 ... M ) e. Fin -> ( ( 1 ... M ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... M ) e. Fin ) ) |
24 |
|
sumz |
|- ( ( ( 1 ... M ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... M ) e. Fin ) -> sum_ i e. ( 1 ... M ) 0 = 0 ) |
25 |
22 23 24
|
mp2b |
|- sum_ i e. ( 1 ... M ) 0 = 0 |
26 |
21 25
|
eqtrdi |
|- ( ph -> sum_ i e. ( 1 ... M ) ( ( G ` i ) ` Z ) = 0 ) |
27 |
26
|
oveq2d |
|- ( ph -> ( ( 1 / M ) x. sum_ i e. ( 1 ... M ) ( ( G ` i ) ` Z ) ) = ( ( 1 / M ) x. 0 ) ) |
28 |
3
|
nncnd |
|- ( ph -> M e. CC ) |
29 |
3
|
nnne0d |
|- ( ph -> M =/= 0 ) |
30 |
28 29
|
reccld |
|- ( ph -> ( 1 / M ) e. CC ) |
31 |
30
|
mul01d |
|- ( ph -> ( ( 1 / M ) x. 0 ) = 0 ) |
32 |
8 27 31
|
3eqtrd |
|- ( ph -> ( P ` Z ) = 0 ) |