Metamath Proof Explorer


Theorem stoweidlem4

Description: Lemma for stoweid : a class variable replaces a setvar variable, for constant functions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypothesis stoweidlem4.1
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A )
Assertion stoweidlem4
|- ( ( ph /\ B e. RR ) -> ( t e. T |-> B ) e. A )

Proof

Step Hyp Ref Expression
1 stoweidlem4.1
 |-  ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A )
2 eleq1
 |-  ( x = B -> ( x e. RR <-> B e. RR ) )
3 2 anbi2d
 |-  ( x = B -> ( ( ph /\ x e. RR ) <-> ( ph /\ B e. RR ) ) )
4 simpl
 |-  ( ( x = B /\ t e. T ) -> x = B )
5 4 mpteq2dva
 |-  ( x = B -> ( t e. T |-> x ) = ( t e. T |-> B ) )
6 5 eleq1d
 |-  ( x = B -> ( ( t e. T |-> x ) e. A <-> ( t e. T |-> B ) e. A ) )
7 3 6 imbi12d
 |-  ( x = B -> ( ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) <-> ( ( ph /\ B e. RR ) -> ( t e. T |-> B ) e. A ) ) )
8 7 1 vtoclg
 |-  ( B e. RR -> ( ( ph /\ B e. RR ) -> ( t e. T |-> B ) e. A ) )
9 8 anabsi7
 |-  ( ( ph /\ B e. RR ) -> ( t e. T |-> B ) e. A )