Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem40.1 |
|- F/_ t P |
2 |
|
stoweidlem40.2 |
|- F/ t ph |
3 |
|
stoweidlem40.3 |
|- Q = ( t e. T |-> ( ( 1 - ( ( P ` t ) ^ N ) ) ^ M ) ) |
4 |
|
stoweidlem40.4 |
|- F = ( t e. T |-> ( 1 - ( ( P ` t ) ^ N ) ) ) |
5 |
|
stoweidlem40.5 |
|- G = ( t e. T |-> 1 ) |
6 |
|
stoweidlem40.6 |
|- H = ( t e. T |-> ( ( P ` t ) ^ N ) ) |
7 |
|
stoweidlem40.7 |
|- ( ph -> P e. A ) |
8 |
|
stoweidlem40.8 |
|- ( ph -> P : T --> RR ) |
9 |
|
stoweidlem40.9 |
|- ( ( ph /\ f e. A ) -> f : T --> RR ) |
10 |
|
stoweidlem40.10 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
11 |
|
stoweidlem40.11 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
12 |
|
stoweidlem40.12 |
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
13 |
|
stoweidlem40.13 |
|- ( ph -> N e. NN ) |
14 |
|
stoweidlem40.14 |
|- ( ph -> M e. NN ) |
15 |
|
simpr |
|- ( ( ph /\ t e. T ) -> t e. T ) |
16 |
|
1red |
|- ( ( ph /\ t e. T ) -> 1 e. RR ) |
17 |
8
|
ffvelrnda |
|- ( ( ph /\ t e. T ) -> ( P ` t ) e. RR ) |
18 |
13
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
19 |
18
|
adantr |
|- ( ( ph /\ t e. T ) -> N e. NN0 ) |
20 |
17 19
|
reexpcld |
|- ( ( ph /\ t e. T ) -> ( ( P ` t ) ^ N ) e. RR ) |
21 |
16 20
|
resubcld |
|- ( ( ph /\ t e. T ) -> ( 1 - ( ( P ` t ) ^ N ) ) e. RR ) |
22 |
4
|
fvmpt2 |
|- ( ( t e. T /\ ( 1 - ( ( P ` t ) ^ N ) ) e. RR ) -> ( F ` t ) = ( 1 - ( ( P ` t ) ^ N ) ) ) |
23 |
15 21 22
|
syl2anc |
|- ( ( ph /\ t e. T ) -> ( F ` t ) = ( 1 - ( ( P ` t ) ^ N ) ) ) |
24 |
23
|
eqcomd |
|- ( ( ph /\ t e. T ) -> ( 1 - ( ( P ` t ) ^ N ) ) = ( F ` t ) ) |
25 |
24
|
oveq1d |
|- ( ( ph /\ t e. T ) -> ( ( 1 - ( ( P ` t ) ^ N ) ) ^ M ) = ( ( F ` t ) ^ M ) ) |
26 |
2 25
|
mpteq2da |
|- ( ph -> ( t e. T |-> ( ( 1 - ( ( P ` t ) ^ N ) ) ^ M ) ) = ( t e. T |-> ( ( F ` t ) ^ M ) ) ) |
27 |
3 26
|
syl5eq |
|- ( ph -> Q = ( t e. T |-> ( ( F ` t ) ^ M ) ) ) |
28 |
|
nfmpt1 |
|- F/_ t ( t e. T |-> ( 1 - ( ( P ` t ) ^ N ) ) ) |
29 |
4 28
|
nfcxfr |
|- F/_ t F |
30 |
|
1re |
|- 1 e. RR |
31 |
5
|
fvmpt2 |
|- ( ( t e. T /\ 1 e. RR ) -> ( G ` t ) = 1 ) |
32 |
30 31
|
mpan2 |
|- ( t e. T -> ( G ` t ) = 1 ) |
33 |
32
|
eqcomd |
|- ( t e. T -> 1 = ( G ` t ) ) |
34 |
33
|
adantl |
|- ( ( ph /\ t e. T ) -> 1 = ( G ` t ) ) |
35 |
6
|
fvmpt2 |
|- ( ( t e. T /\ ( ( P ` t ) ^ N ) e. RR ) -> ( H ` t ) = ( ( P ` t ) ^ N ) ) |
36 |
15 20 35
|
syl2anc |
|- ( ( ph /\ t e. T ) -> ( H ` t ) = ( ( P ` t ) ^ N ) ) |
37 |
36
|
eqcomd |
|- ( ( ph /\ t e. T ) -> ( ( P ` t ) ^ N ) = ( H ` t ) ) |
38 |
34 37
|
oveq12d |
|- ( ( ph /\ t e. T ) -> ( 1 - ( ( P ` t ) ^ N ) ) = ( ( G ` t ) - ( H ` t ) ) ) |
39 |
2 38
|
mpteq2da |
|- ( ph -> ( t e. T |-> ( 1 - ( ( P ` t ) ^ N ) ) ) = ( t e. T |-> ( ( G ` t ) - ( H ` t ) ) ) ) |
40 |
4 39
|
syl5eq |
|- ( ph -> F = ( t e. T |-> ( ( G ` t ) - ( H ` t ) ) ) ) |
41 |
12
|
stoweidlem4 |
|- ( ( ph /\ 1 e. RR ) -> ( t e. T |-> 1 ) e. A ) |
42 |
30 41
|
mpan2 |
|- ( ph -> ( t e. T |-> 1 ) e. A ) |
43 |
5 42
|
eqeltrid |
|- ( ph -> G e. A ) |
44 |
1 2 9 11 12 7 18
|
stoweidlem19 |
|- ( ph -> ( t e. T |-> ( ( P ` t ) ^ N ) ) e. A ) |
45 |
6 44
|
eqeltrid |
|- ( ph -> H e. A ) |
46 |
|
nfmpt1 |
|- F/_ t ( t e. T |-> 1 ) |
47 |
5 46
|
nfcxfr |
|- F/_ t G |
48 |
|
nfmpt1 |
|- F/_ t ( t e. T |-> ( ( P ` t ) ^ N ) ) |
49 |
6 48
|
nfcxfr |
|- F/_ t H |
50 |
47 49 2 9 10 11 12
|
stoweidlem33 |
|- ( ( ph /\ G e. A /\ H e. A ) -> ( t e. T |-> ( ( G ` t ) - ( H ` t ) ) ) e. A ) |
51 |
43 45 50
|
mpd3an23 |
|- ( ph -> ( t e. T |-> ( ( G ` t ) - ( H ` t ) ) ) e. A ) |
52 |
40 51
|
eqeltrd |
|- ( ph -> F e. A ) |
53 |
14
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
54 |
29 2 9 11 12 52 53
|
stoweidlem19 |
|- ( ph -> ( t e. T |-> ( ( F ` t ) ^ M ) ) e. A ) |
55 |
27 54
|
eqeltrd |
|- ( ph -> Q e. A ) |