Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem46.1 |
|- F/_ t U |
2 |
|
stoweidlem46.2 |
|- F/_ h Q |
3 |
|
stoweidlem46.3 |
|- F/ q ph |
4 |
|
stoweidlem46.4 |
|- F/ t ph |
5 |
|
stoweidlem46.5 |
|- K = ( topGen ` ran (,) ) |
6 |
|
stoweidlem46.6 |
|- Q = { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) } |
7 |
|
stoweidlem46.7 |
|- W = { w e. J | E. h e. Q w = { t e. T | 0 < ( h ` t ) } } |
8 |
|
stoweidlem46.8 |
|- T = U. J |
9 |
|
stoweidlem46.9 |
|- ( ph -> J e. Comp ) |
10 |
|
stoweidlem46.10 |
|- ( ph -> A C_ ( J Cn K ) ) |
11 |
|
stoweidlem46.11 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
12 |
|
stoweidlem46.12 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
13 |
|
stoweidlem46.13 |
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
14 |
|
stoweidlem46.14 |
|- ( ( ph /\ ( r e. T /\ t e. T /\ r =/= t ) ) -> E. q e. A ( q ` r ) =/= ( q ` t ) ) |
15 |
|
stoweidlem46.15 |
|- ( ph -> U e. J ) |
16 |
|
stoweidlem46.16 |
|- ( ph -> Z e. U ) |
17 |
|
stoweidlem46.17 |
|- ( ph -> T e. _V ) |
18 |
|
nfv |
|- F/ q s e. ( T \ U ) |
19 |
3 18
|
nfan |
|- F/ q ( ph /\ s e. ( T \ U ) ) |
20 |
|
nfcv |
|- F/_ t T |
21 |
20 1
|
nfdif |
|- F/_ t ( T \ U ) |
22 |
21
|
nfel2 |
|- F/ t s e. ( T \ U ) |
23 |
4 22
|
nfan |
|- F/ t ( ph /\ s e. ( T \ U ) ) |
24 |
9
|
adantr |
|- ( ( ph /\ s e. ( T \ U ) ) -> J e. Comp ) |
25 |
10
|
adantr |
|- ( ( ph /\ s e. ( T \ U ) ) -> A C_ ( J Cn K ) ) |
26 |
11
|
3adant1r |
|- ( ( ( ph /\ s e. ( T \ U ) ) /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
27 |
12
|
3adant1r |
|- ( ( ( ph /\ s e. ( T \ U ) ) /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
28 |
13
|
adantlr |
|- ( ( ( ph /\ s e. ( T \ U ) ) /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
29 |
14
|
adantlr |
|- ( ( ( ph /\ s e. ( T \ U ) ) /\ ( r e. T /\ t e. T /\ r =/= t ) ) -> E. q e. A ( q ` r ) =/= ( q ` t ) ) |
30 |
15
|
adantr |
|- ( ( ph /\ s e. ( T \ U ) ) -> U e. J ) |
31 |
16
|
adantr |
|- ( ( ph /\ s e. ( T \ U ) ) -> Z e. U ) |
32 |
|
simpr |
|- ( ( ph /\ s e. ( T \ U ) ) -> s e. ( T \ U ) ) |
33 |
19 23 2 5 6 8 24 25 26 27 28 29 30 31 32
|
stoweidlem43 |
|- ( ( ph /\ s e. ( T \ U ) ) -> E. h ( h e. Q /\ 0 < ( h ` s ) ) ) |
34 |
|
nfv |
|- F/ g ( h e. Q /\ 0 < ( h ` s ) ) |
35 |
2
|
nfel2 |
|- F/ h g e. Q |
36 |
|
nfv |
|- F/ h 0 < ( g ` s ) |
37 |
35 36
|
nfan |
|- F/ h ( g e. Q /\ 0 < ( g ` s ) ) |
38 |
|
eleq1 |
|- ( h = g -> ( h e. Q <-> g e. Q ) ) |
39 |
|
fveq1 |
|- ( h = g -> ( h ` s ) = ( g ` s ) ) |
40 |
39
|
breq2d |
|- ( h = g -> ( 0 < ( h ` s ) <-> 0 < ( g ` s ) ) ) |
41 |
38 40
|
anbi12d |
|- ( h = g -> ( ( h e. Q /\ 0 < ( h ` s ) ) <-> ( g e. Q /\ 0 < ( g ` s ) ) ) ) |
42 |
34 37 41
|
cbvexv1 |
|- ( E. h ( h e. Q /\ 0 < ( h ` s ) ) <-> E. g ( g e. Q /\ 0 < ( g ` s ) ) ) |
43 |
33 42
|
sylib |
|- ( ( ph /\ s e. ( T \ U ) ) -> E. g ( g e. Q /\ 0 < ( g ` s ) ) ) |
44 |
|
rabexg |
|- ( T e. _V -> { t e. T | 0 < ( g ` t ) } e. _V ) |
45 |
17 44
|
syl |
|- ( ph -> { t e. T | 0 < ( g ` t ) } e. _V ) |
46 |
45
|
ad2antrr |
|- ( ( ( ph /\ s e. ( T \ U ) ) /\ ( g e. Q /\ 0 < ( g ` s ) ) ) -> { t e. T | 0 < ( g ` t ) } e. _V ) |
47 |
|
eldifi |
|- ( s e. ( T \ U ) -> s e. T ) |
48 |
47
|
ad2antlr |
|- ( ( ( ph /\ s e. ( T \ U ) ) /\ ( g e. Q /\ 0 < ( g ` s ) ) ) -> s e. T ) |
49 |
|
simprr |
|- ( ( ( ph /\ s e. ( T \ U ) ) /\ ( g e. Q /\ 0 < ( g ` s ) ) ) -> 0 < ( g ` s ) ) |
50 |
|
fveq2 |
|- ( t = s -> ( g ` t ) = ( g ` s ) ) |
51 |
50
|
breq2d |
|- ( t = s -> ( 0 < ( g ` t ) <-> 0 < ( g ` s ) ) ) |
52 |
51
|
elrab |
|- ( s e. { t e. T | 0 < ( g ` t ) } <-> ( s e. T /\ 0 < ( g ` s ) ) ) |
53 |
48 49 52
|
sylanbrc |
|- ( ( ( ph /\ s e. ( T \ U ) ) /\ ( g e. Q /\ 0 < ( g ` s ) ) ) -> s e. { t e. T | 0 < ( g ` t ) } ) |
54 |
|
simpll |
|- ( ( ( ph /\ s e. ( T \ U ) ) /\ ( g e. Q /\ 0 < ( g ` s ) ) ) -> ph ) |
55 |
10
|
adantr |
|- ( ( ph /\ g e. Q ) -> A C_ ( J Cn K ) ) |
56 |
|
simpr |
|- ( ( ph /\ g e. Q ) -> g e. Q ) |
57 |
56 6
|
eleqtrdi |
|- ( ( ph /\ g e. Q ) -> g e. { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) } ) |
58 |
|
fveq1 |
|- ( h = g -> ( h ` Z ) = ( g ` Z ) ) |
59 |
58
|
eqeq1d |
|- ( h = g -> ( ( h ` Z ) = 0 <-> ( g ` Z ) = 0 ) ) |
60 |
|
fveq1 |
|- ( h = g -> ( h ` t ) = ( g ` t ) ) |
61 |
60
|
breq2d |
|- ( h = g -> ( 0 <_ ( h ` t ) <-> 0 <_ ( g ` t ) ) ) |
62 |
60
|
breq1d |
|- ( h = g -> ( ( h ` t ) <_ 1 <-> ( g ` t ) <_ 1 ) ) |
63 |
61 62
|
anbi12d |
|- ( h = g -> ( ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) <-> ( 0 <_ ( g ` t ) /\ ( g ` t ) <_ 1 ) ) ) |
64 |
63
|
ralbidv |
|- ( h = g -> ( A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) <-> A. t e. T ( 0 <_ ( g ` t ) /\ ( g ` t ) <_ 1 ) ) ) |
65 |
59 64
|
anbi12d |
|- ( h = g -> ( ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) <-> ( ( g ` Z ) = 0 /\ A. t e. T ( 0 <_ ( g ` t ) /\ ( g ` t ) <_ 1 ) ) ) ) |
66 |
65
|
elrab |
|- ( g e. { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) } <-> ( g e. A /\ ( ( g ` Z ) = 0 /\ A. t e. T ( 0 <_ ( g ` t ) /\ ( g ` t ) <_ 1 ) ) ) ) |
67 |
57 66
|
sylib |
|- ( ( ph /\ g e. Q ) -> ( g e. A /\ ( ( g ` Z ) = 0 /\ A. t e. T ( 0 <_ ( g ` t ) /\ ( g ` t ) <_ 1 ) ) ) ) |
68 |
67
|
simpld |
|- ( ( ph /\ g e. Q ) -> g e. A ) |
69 |
55 68
|
sseldd |
|- ( ( ph /\ g e. Q ) -> g e. ( J Cn K ) ) |
70 |
69
|
ad2ant2r |
|- ( ( ( ph /\ s e. ( T \ U ) ) /\ ( g e. Q /\ 0 < ( g ` s ) ) ) -> g e. ( J Cn K ) ) |
71 |
|
nfcv |
|- F/_ t 0 |
72 |
|
nfcv |
|- F/_ t g |
73 |
|
nfv |
|- F/ t g e. ( J Cn K ) |
74 |
4 73
|
nfan |
|- F/ t ( ph /\ g e. ( J Cn K ) ) |
75 |
|
eqid |
|- { t e. T | 0 < ( g ` t ) } = { t e. T | 0 < ( g ` t ) } |
76 |
|
0xr |
|- 0 e. RR* |
77 |
76
|
a1i |
|- ( ( ph /\ g e. ( J Cn K ) ) -> 0 e. RR* ) |
78 |
|
simpr |
|- ( ( ph /\ g e. ( J Cn K ) ) -> g e. ( J Cn K ) ) |
79 |
71 72 74 5 8 75 77 78
|
rfcnpre1 |
|- ( ( ph /\ g e. ( J Cn K ) ) -> { t e. T | 0 < ( g ` t ) } e. J ) |
80 |
54 70 79
|
syl2anc |
|- ( ( ( ph /\ s e. ( T \ U ) ) /\ ( g e. Q /\ 0 < ( g ` s ) ) ) -> { t e. T | 0 < ( g ` t ) } e. J ) |
81 |
|
eqidd |
|- ( ( ph /\ g e. Q ) -> { t e. T | 0 < ( g ` t ) } = { t e. T | 0 < ( g ` t ) } ) |
82 |
|
nfv |
|- F/ h { t e. T | 0 < ( g ` t ) } = { t e. T | 0 < ( g ` t ) } |
83 |
|
nfcv |
|- F/_ h g |
84 |
60
|
breq2d |
|- ( h = g -> ( 0 < ( h ` t ) <-> 0 < ( g ` t ) ) ) |
85 |
84
|
rabbidv |
|- ( h = g -> { t e. T | 0 < ( h ` t ) } = { t e. T | 0 < ( g ` t ) } ) |
86 |
85
|
eqeq2d |
|- ( h = g -> ( { t e. T | 0 < ( g ` t ) } = { t e. T | 0 < ( h ` t ) } <-> { t e. T | 0 < ( g ` t ) } = { t e. T | 0 < ( g ` t ) } ) ) |
87 |
82 83 2 86
|
rspcegf |
|- ( ( g e. Q /\ { t e. T | 0 < ( g ` t ) } = { t e. T | 0 < ( g ` t ) } ) -> E. h e. Q { t e. T | 0 < ( g ` t ) } = { t e. T | 0 < ( h ` t ) } ) |
88 |
56 81 87
|
syl2anc |
|- ( ( ph /\ g e. Q ) -> E. h e. Q { t e. T | 0 < ( g ` t ) } = { t e. T | 0 < ( h ` t ) } ) |
89 |
88
|
ad2ant2r |
|- ( ( ( ph /\ s e. ( T \ U ) ) /\ ( g e. Q /\ 0 < ( g ` s ) ) ) -> E. h e. Q { t e. T | 0 < ( g ` t ) } = { t e. T | 0 < ( h ` t ) } ) |
90 |
|
eqeq1 |
|- ( w = { t e. T | 0 < ( g ` t ) } -> ( w = { t e. T | 0 < ( h ` t ) } <-> { t e. T | 0 < ( g ` t ) } = { t e. T | 0 < ( h ` t ) } ) ) |
91 |
90
|
rexbidv |
|- ( w = { t e. T | 0 < ( g ` t ) } -> ( E. h e. Q w = { t e. T | 0 < ( h ` t ) } <-> E. h e. Q { t e. T | 0 < ( g ` t ) } = { t e. T | 0 < ( h ` t ) } ) ) |
92 |
91
|
elrab |
|- ( { t e. T | 0 < ( g ` t ) } e. { w e. J | E. h e. Q w = { t e. T | 0 < ( h ` t ) } } <-> ( { t e. T | 0 < ( g ` t ) } e. J /\ E. h e. Q { t e. T | 0 < ( g ` t ) } = { t e. T | 0 < ( h ` t ) } ) ) |
93 |
80 89 92
|
sylanbrc |
|- ( ( ( ph /\ s e. ( T \ U ) ) /\ ( g e. Q /\ 0 < ( g ` s ) ) ) -> { t e. T | 0 < ( g ` t ) } e. { w e. J | E. h e. Q w = { t e. T | 0 < ( h ` t ) } } ) |
94 |
93 7
|
eleqtrrdi |
|- ( ( ( ph /\ s e. ( T \ U ) ) /\ ( g e. Q /\ 0 < ( g ` s ) ) ) -> { t e. T | 0 < ( g ` t ) } e. W ) |
95 |
|
nfcv |
|- F/_ w { t e. T | 0 < ( g ` t ) } |
96 |
|
nfv |
|- F/ w s e. { t e. T | 0 < ( g ` t ) } |
97 |
|
nfrab1 |
|- F/_ w { w e. J | E. h e. Q w = { t e. T | 0 < ( h ` t ) } } |
98 |
7 97
|
nfcxfr |
|- F/_ w W |
99 |
98
|
nfel2 |
|- F/ w { t e. T | 0 < ( g ` t ) } e. W |
100 |
96 99
|
nfan |
|- F/ w ( s e. { t e. T | 0 < ( g ` t ) } /\ { t e. T | 0 < ( g ` t ) } e. W ) |
101 |
|
eleq2 |
|- ( w = { t e. T | 0 < ( g ` t ) } -> ( s e. w <-> s e. { t e. T | 0 < ( g ` t ) } ) ) |
102 |
|
eleq1 |
|- ( w = { t e. T | 0 < ( g ` t ) } -> ( w e. W <-> { t e. T | 0 < ( g ` t ) } e. W ) ) |
103 |
101 102
|
anbi12d |
|- ( w = { t e. T | 0 < ( g ` t ) } -> ( ( s e. w /\ w e. W ) <-> ( s e. { t e. T | 0 < ( g ` t ) } /\ { t e. T | 0 < ( g ` t ) } e. W ) ) ) |
104 |
95 100 103
|
spcegf |
|- ( { t e. T | 0 < ( g ` t ) } e. _V -> ( ( s e. { t e. T | 0 < ( g ` t ) } /\ { t e. T | 0 < ( g ` t ) } e. W ) -> E. w ( s e. w /\ w e. W ) ) ) |
105 |
104
|
imp |
|- ( ( { t e. T | 0 < ( g ` t ) } e. _V /\ ( s e. { t e. T | 0 < ( g ` t ) } /\ { t e. T | 0 < ( g ` t ) } e. W ) ) -> E. w ( s e. w /\ w e. W ) ) |
106 |
46 53 94 105
|
syl12anc |
|- ( ( ( ph /\ s e. ( T \ U ) ) /\ ( g e. Q /\ 0 < ( g ` s ) ) ) -> E. w ( s e. w /\ w e. W ) ) |
107 |
43 106
|
exlimddv |
|- ( ( ph /\ s e. ( T \ U ) ) -> E. w ( s e. w /\ w e. W ) ) |
108 |
|
nfcv |
|- F/_ w s |
109 |
108 98
|
elunif |
|- ( s e. U. W <-> E. w ( s e. w /\ w e. W ) ) |
110 |
107 109
|
sylibr |
|- ( ( ph /\ s e. ( T \ U ) ) -> s e. U. W ) |
111 |
110
|
ex |
|- ( ph -> ( s e. ( T \ U ) -> s e. U. W ) ) |
112 |
111
|
ssrdv |
|- ( ph -> ( T \ U ) C_ U. W ) |