Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem48.1 |
|- F/ i ph |
2 |
|
stoweidlem48.2 |
|- F/ t ph |
3 |
|
stoweidlem48.3 |
|- Y = { h e. A | A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) } |
4 |
|
stoweidlem48.4 |
|- P = ( f e. Y , g e. Y |-> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) ) |
5 |
|
stoweidlem48.5 |
|- X = ( seq 1 ( P , U ) ` M ) |
6 |
|
stoweidlem48.6 |
|- F = ( t e. T |-> ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ) |
7 |
|
stoweidlem48.7 |
|- Z = ( t e. T |-> ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
8 |
|
stoweidlem48.8 |
|- ( ph -> M e. NN ) |
9 |
|
stoweidlem48.9 |
|- ( ph -> W : ( 1 ... M ) --> V ) |
10 |
|
stoweidlem48.10 |
|- ( ph -> U : ( 1 ... M ) --> Y ) |
11 |
|
stoweidlem48.11 |
|- ( ph -> D C_ U. ran W ) |
12 |
|
stoweidlem48.12 |
|- ( ph -> D C_ T ) |
13 |
|
stoweidlem48.13 |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> A. t e. ( W ` i ) ( ( U ` i ) ` t ) < E ) |
14 |
|
stoweidlem48.14 |
|- ( ph -> T e. _V ) |
15 |
|
stoweidlem48.15 |
|- ( ( ph /\ f e. A ) -> f : T --> RR ) |
16 |
|
stoweidlem48.16 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
17 |
|
stoweidlem48.17 |
|- ( ph -> E e. RR+ ) |
18 |
12
|
sselda |
|- ( ( ph /\ t e. D ) -> t e. T ) |
19 |
|
nfra1 |
|- F/ t A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) |
20 |
|
nfcv |
|- F/_ t A |
21 |
19 20
|
nfrabw |
|- F/_ t { h e. A | A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) } |
22 |
3 21
|
nfcxfr |
|- F/_ t Y |
23 |
3
|
eleq2i |
|- ( f e. Y <-> f e. { h e. A | A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) } ) |
24 |
|
fveq1 |
|- ( h = f -> ( h ` t ) = ( f ` t ) ) |
25 |
24
|
breq2d |
|- ( h = f -> ( 0 <_ ( h ` t ) <-> 0 <_ ( f ` t ) ) ) |
26 |
24
|
breq1d |
|- ( h = f -> ( ( h ` t ) <_ 1 <-> ( f ` t ) <_ 1 ) ) |
27 |
25 26
|
anbi12d |
|- ( h = f -> ( ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) <-> ( 0 <_ ( f ` t ) /\ ( f ` t ) <_ 1 ) ) ) |
28 |
27
|
ralbidv |
|- ( h = f -> ( A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) <-> A. t e. T ( 0 <_ ( f ` t ) /\ ( f ` t ) <_ 1 ) ) ) |
29 |
28
|
elrab |
|- ( f e. { h e. A | A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) } <-> ( f e. A /\ A. t e. T ( 0 <_ ( f ` t ) /\ ( f ` t ) <_ 1 ) ) ) |
30 |
23 29
|
sylbb |
|- ( f e. Y -> ( f e. A /\ A. t e. T ( 0 <_ ( f ` t ) /\ ( f ` t ) <_ 1 ) ) ) |
31 |
30
|
simpld |
|- ( f e. Y -> f e. A ) |
32 |
31 15
|
sylan2 |
|- ( ( ph /\ f e. Y ) -> f : T --> RR ) |
33 |
|
eqid |
|- ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) = ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) |
34 |
2 3 33 15 16
|
stoweidlem16 |
|- ( ( ph /\ f e. Y /\ g e. Y ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. Y ) |
35 |
1 22 4 5 6 7 14 8 10 32 34
|
fmuldfeq |
|- ( ( ph /\ t e. T ) -> ( X ` t ) = ( Z ` t ) ) |
36 |
18 35
|
syldan |
|- ( ( ph /\ t e. D ) -> ( X ` t ) = ( Z ` t ) ) |
37 |
|
elnnuz |
|- ( M e. NN <-> M e. ( ZZ>= ` 1 ) ) |
38 |
8 37
|
sylib |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
39 |
38
|
adantr |
|- ( ( ph /\ t e. D ) -> M e. ( ZZ>= ` 1 ) ) |
40 |
|
nfv |
|- F/ i t e. T |
41 |
1 40
|
nfan |
|- F/ i ( ph /\ t e. T ) |
42 |
10
|
ffvelrnda |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( U ` i ) e. Y ) |
43 |
|
fveq1 |
|- ( h = ( U ` i ) -> ( h ` t ) = ( ( U ` i ) ` t ) ) |
44 |
43
|
breq2d |
|- ( h = ( U ` i ) -> ( 0 <_ ( h ` t ) <-> 0 <_ ( ( U ` i ) ` t ) ) ) |
45 |
43
|
breq1d |
|- ( h = ( U ` i ) -> ( ( h ` t ) <_ 1 <-> ( ( U ` i ) ` t ) <_ 1 ) ) |
46 |
44 45
|
anbi12d |
|- ( h = ( U ` i ) -> ( ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) <-> ( 0 <_ ( ( U ` i ) ` t ) /\ ( ( U ` i ) ` t ) <_ 1 ) ) ) |
47 |
46
|
ralbidv |
|- ( h = ( U ` i ) -> ( A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) <-> A. t e. T ( 0 <_ ( ( U ` i ) ` t ) /\ ( ( U ` i ) ` t ) <_ 1 ) ) ) |
48 |
47 3
|
elrab2 |
|- ( ( U ` i ) e. Y <-> ( ( U ` i ) e. A /\ A. t e. T ( 0 <_ ( ( U ` i ) ` t ) /\ ( ( U ` i ) ` t ) <_ 1 ) ) ) |
49 |
42 48
|
sylib |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( U ` i ) e. A /\ A. t e. T ( 0 <_ ( ( U ` i ) ` t ) /\ ( ( U ` i ) ` t ) <_ 1 ) ) ) |
50 |
49
|
simpld |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( U ` i ) e. A ) |
51 |
|
simpl |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ph ) |
52 |
51 50
|
jca |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ph /\ ( U ` i ) e. A ) ) |
53 |
|
eleq1 |
|- ( f = ( U ` i ) -> ( f e. A <-> ( U ` i ) e. A ) ) |
54 |
53
|
anbi2d |
|- ( f = ( U ` i ) -> ( ( ph /\ f e. A ) <-> ( ph /\ ( U ` i ) e. A ) ) ) |
55 |
|
feq1 |
|- ( f = ( U ` i ) -> ( f : T --> RR <-> ( U ` i ) : T --> RR ) ) |
56 |
54 55
|
imbi12d |
|- ( f = ( U ` i ) -> ( ( ( ph /\ f e. A ) -> f : T --> RR ) <-> ( ( ph /\ ( U ` i ) e. A ) -> ( U ` i ) : T --> RR ) ) ) |
57 |
56 15
|
vtoclg |
|- ( ( U ` i ) e. A -> ( ( ph /\ ( U ` i ) e. A ) -> ( U ` i ) : T --> RR ) ) |
58 |
50 52 57
|
sylc |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( U ` i ) : T --> RR ) |
59 |
58
|
adantlr |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> ( U ` i ) : T --> RR ) |
60 |
|
simplr |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> t e. T ) |
61 |
59 60
|
ffvelrnd |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> ( ( U ` i ) ` t ) e. RR ) |
62 |
|
eqid |
|- ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) = ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) |
63 |
41 61 62
|
fmptdf |
|- ( ( ph /\ t e. T ) -> ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) : ( 1 ... M ) --> RR ) |
64 |
|
simpr |
|- ( ( ph /\ t e. T ) -> t e. T ) |
65 |
|
ovex |
|- ( 1 ... M ) e. _V |
66 |
|
mptexg |
|- ( ( 1 ... M ) e. _V -> ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) e. _V ) |
67 |
65 66
|
mp1i |
|- ( ( ph /\ t e. T ) -> ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) e. _V ) |
68 |
6
|
fvmpt2 |
|- ( ( t e. T /\ ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) e. _V ) -> ( F ` t ) = ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ) |
69 |
64 67 68
|
syl2anc |
|- ( ( ph /\ t e. T ) -> ( F ` t ) = ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ) |
70 |
69
|
feq1d |
|- ( ( ph /\ t e. T ) -> ( ( F ` t ) : ( 1 ... M ) --> RR <-> ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) : ( 1 ... M ) --> RR ) ) |
71 |
63 70
|
mpbird |
|- ( ( ph /\ t e. T ) -> ( F ` t ) : ( 1 ... M ) --> RR ) |
72 |
18 71
|
syldan |
|- ( ( ph /\ t e. D ) -> ( F ` t ) : ( 1 ... M ) --> RR ) |
73 |
72
|
ffvelrnda |
|- ( ( ( ph /\ t e. D ) /\ k e. ( 1 ... M ) ) -> ( ( F ` t ) ` k ) e. RR ) |
74 |
|
remulcl |
|- ( ( k e. RR /\ j e. RR ) -> ( k x. j ) e. RR ) |
75 |
74
|
adantl |
|- ( ( ( ph /\ t e. D ) /\ ( k e. RR /\ j e. RR ) ) -> ( k x. j ) e. RR ) |
76 |
39 73 75
|
seqcl |
|- ( ( ph /\ t e. D ) -> ( seq 1 ( x. , ( F ` t ) ) ` M ) e. RR ) |
77 |
7
|
fvmpt2 |
|- ( ( t e. T /\ ( seq 1 ( x. , ( F ` t ) ) ` M ) e. RR ) -> ( Z ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
78 |
18 76 77
|
syl2anc |
|- ( ( ph /\ t e. D ) -> ( Z ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
79 |
|
nfcv |
|- F/_ i T |
80 |
|
nfmpt1 |
|- F/_ i ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) |
81 |
79 80
|
nfmpt |
|- F/_ i ( t e. T |-> ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ) |
82 |
6 81
|
nfcxfr |
|- F/_ i F |
83 |
|
nfcv |
|- F/_ i t |
84 |
82 83
|
nffv |
|- F/_ i ( F ` t ) |
85 |
|
nfv |
|- F/ i t e. D |
86 |
1 85
|
nfan |
|- F/ i ( ph /\ t e. D ) |
87 |
|
nfcv |
|- F/_ j seq 1 ( x. , ( F ` t ) ) |
88 |
|
eqid |
|- seq 1 ( x. , ( F ` t ) ) = seq 1 ( x. , ( F ` t ) ) |
89 |
8
|
adantr |
|- ( ( ph /\ t e. D ) -> M e. NN ) |
90 |
|
simpll |
|- ( ( ( ph /\ t e. D ) /\ i e. ( 1 ... M ) ) -> ph ) |
91 |
|
simpr |
|- ( ( ( ph /\ t e. D ) /\ i e. ( 1 ... M ) ) -> i e. ( 1 ... M ) ) |
92 |
18
|
adantr |
|- ( ( ( ph /\ t e. D ) /\ i e. ( 1 ... M ) ) -> t e. T ) |
93 |
49
|
simprd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> A. t e. T ( 0 <_ ( ( U ` i ) ` t ) /\ ( ( U ` i ) ` t ) <_ 1 ) ) |
94 |
93
|
r19.21bi |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ t e. T ) -> ( 0 <_ ( ( U ` i ) ` t ) /\ ( ( U ` i ) ` t ) <_ 1 ) ) |
95 |
94
|
simpld |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ t e. T ) -> 0 <_ ( ( U ` i ) ` t ) ) |
96 |
90 91 92 95
|
syl21anc |
|- ( ( ( ph /\ t e. D ) /\ i e. ( 1 ... M ) ) -> 0 <_ ( ( U ` i ) ` t ) ) |
97 |
69
|
fveq1d |
|- ( ( ph /\ t e. T ) -> ( ( F ` t ) ` i ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) ) |
98 |
90 92 97
|
syl2anc |
|- ( ( ( ph /\ t e. D ) /\ i e. ( 1 ... M ) ) -> ( ( F ` t ) ` i ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) ) |
99 |
90 92 91 61
|
syl21anc |
|- ( ( ( ph /\ t e. D ) /\ i e. ( 1 ... M ) ) -> ( ( U ` i ) ` t ) e. RR ) |
100 |
62
|
fvmpt2 |
|- ( ( i e. ( 1 ... M ) /\ ( ( U ` i ) ` t ) e. RR ) -> ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) = ( ( U ` i ) ` t ) ) |
101 |
91 99 100
|
syl2anc |
|- ( ( ( ph /\ t e. D ) /\ i e. ( 1 ... M ) ) -> ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) = ( ( U ` i ) ` t ) ) |
102 |
98 101
|
eqtrd |
|- ( ( ( ph /\ t e. D ) /\ i e. ( 1 ... M ) ) -> ( ( F ` t ) ` i ) = ( ( U ` i ) ` t ) ) |
103 |
96 102
|
breqtrrd |
|- ( ( ( ph /\ t e. D ) /\ i e. ( 1 ... M ) ) -> 0 <_ ( ( F ` t ) ` i ) ) |
104 |
94
|
simprd |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ t e. T ) -> ( ( U ` i ) ` t ) <_ 1 ) |
105 |
90 91 92 104
|
syl21anc |
|- ( ( ( ph /\ t e. D ) /\ i e. ( 1 ... M ) ) -> ( ( U ` i ) ` t ) <_ 1 ) |
106 |
102 105
|
eqbrtrd |
|- ( ( ( ph /\ t e. D ) /\ i e. ( 1 ... M ) ) -> ( ( F ` t ) ` i ) <_ 1 ) |
107 |
17
|
adantr |
|- ( ( ph /\ t e. D ) -> E e. RR+ ) |
108 |
11
|
sselda |
|- ( ( ph /\ t e. D ) -> t e. U. ran W ) |
109 |
|
eluni |
|- ( t e. U. ran W <-> E. w ( t e. w /\ w e. ran W ) ) |
110 |
108 109
|
sylib |
|- ( ( ph /\ t e. D ) -> E. w ( t e. w /\ w e. ran W ) ) |
111 |
|
ffn |
|- ( W : ( 1 ... M ) --> V -> W Fn ( 1 ... M ) ) |
112 |
|
fvelrnb |
|- ( W Fn ( 1 ... M ) -> ( w e. ran W <-> E. j e. ( 1 ... M ) ( W ` j ) = w ) ) |
113 |
9 111 112
|
3syl |
|- ( ph -> ( w e. ran W <-> E. j e. ( 1 ... M ) ( W ` j ) = w ) ) |
114 |
113
|
biimpa |
|- ( ( ph /\ w e. ran W ) -> E. j e. ( 1 ... M ) ( W ` j ) = w ) |
115 |
114
|
adantrl |
|- ( ( ph /\ ( t e. w /\ w e. ran W ) ) -> E. j e. ( 1 ... M ) ( W ` j ) = w ) |
116 |
|
simplr |
|- ( ( ( ph /\ t e. w ) /\ ( W ` j ) = w ) -> t e. w ) |
117 |
|
simpr |
|- ( ( ( ph /\ t e. w ) /\ ( W ` j ) = w ) -> ( W ` j ) = w ) |
118 |
116 117
|
eleqtrrd |
|- ( ( ( ph /\ t e. w ) /\ ( W ` j ) = w ) -> t e. ( W ` j ) ) |
119 |
118
|
ex |
|- ( ( ph /\ t e. w ) -> ( ( W ` j ) = w -> t e. ( W ` j ) ) ) |
120 |
119
|
reximdv |
|- ( ( ph /\ t e. w ) -> ( E. j e. ( 1 ... M ) ( W ` j ) = w -> E. j e. ( 1 ... M ) t e. ( W ` j ) ) ) |
121 |
120
|
adantrr |
|- ( ( ph /\ ( t e. w /\ w e. ran W ) ) -> ( E. j e. ( 1 ... M ) ( W ` j ) = w -> E. j e. ( 1 ... M ) t e. ( W ` j ) ) ) |
122 |
115 121
|
mpd |
|- ( ( ph /\ ( t e. w /\ w e. ran W ) ) -> E. j e. ( 1 ... M ) t e. ( W ` j ) ) |
123 |
122
|
ex |
|- ( ph -> ( ( t e. w /\ w e. ran W ) -> E. j e. ( 1 ... M ) t e. ( W ` j ) ) ) |
124 |
123
|
exlimdv |
|- ( ph -> ( E. w ( t e. w /\ w e. ran W ) -> E. j e. ( 1 ... M ) t e. ( W ` j ) ) ) |
125 |
124
|
adantr |
|- ( ( ph /\ t e. D ) -> ( E. w ( t e. w /\ w e. ran W ) -> E. j e. ( 1 ... M ) t e. ( W ` j ) ) ) |
126 |
110 125
|
mpd |
|- ( ( ph /\ t e. D ) -> E. j e. ( 1 ... M ) t e. ( W ` j ) ) |
127 |
|
simplll |
|- ( ( ( ( ph /\ t e. D ) /\ j e. ( 1 ... M ) ) /\ t e. ( W ` j ) ) -> ph ) |
128 |
|
simplr |
|- ( ( ( ( ph /\ t e. D ) /\ j e. ( 1 ... M ) ) /\ t e. ( W ` j ) ) -> j e. ( 1 ... M ) ) |
129 |
|
simpr |
|- ( ( ( ( ph /\ t e. D ) /\ j e. ( 1 ... M ) ) /\ t e. ( W ` j ) ) -> t e. ( W ` j ) ) |
130 |
|
nfv |
|- F/ i j e. ( 1 ... M ) |
131 |
|
nfv |
|- F/ i t e. ( W ` j ) |
132 |
1 130 131
|
nf3an |
|- F/ i ( ph /\ j e. ( 1 ... M ) /\ t e. ( W ` j ) ) |
133 |
|
nfv |
|- F/ i ( ( U ` j ) ` t ) < E |
134 |
132 133
|
nfim |
|- F/ i ( ( ph /\ j e. ( 1 ... M ) /\ t e. ( W ` j ) ) -> ( ( U ` j ) ` t ) < E ) |
135 |
|
eleq1 |
|- ( i = j -> ( i e. ( 1 ... M ) <-> j e. ( 1 ... M ) ) ) |
136 |
|
fveq2 |
|- ( i = j -> ( W ` i ) = ( W ` j ) ) |
137 |
136
|
eleq2d |
|- ( i = j -> ( t e. ( W ` i ) <-> t e. ( W ` j ) ) ) |
138 |
135 137
|
3anbi23d |
|- ( i = j -> ( ( ph /\ i e. ( 1 ... M ) /\ t e. ( W ` i ) ) <-> ( ph /\ j e. ( 1 ... M ) /\ t e. ( W ` j ) ) ) ) |
139 |
|
fveq2 |
|- ( i = j -> ( U ` i ) = ( U ` j ) ) |
140 |
139
|
fveq1d |
|- ( i = j -> ( ( U ` i ) ` t ) = ( ( U ` j ) ` t ) ) |
141 |
140
|
breq1d |
|- ( i = j -> ( ( ( U ` i ) ` t ) < E <-> ( ( U ` j ) ` t ) < E ) ) |
142 |
138 141
|
imbi12d |
|- ( i = j -> ( ( ( ph /\ i e. ( 1 ... M ) /\ t e. ( W ` i ) ) -> ( ( U ` i ) ` t ) < E ) <-> ( ( ph /\ j e. ( 1 ... M ) /\ t e. ( W ` j ) ) -> ( ( U ` j ) ` t ) < E ) ) ) |
143 |
13
|
r19.21bi |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ t e. ( W ` i ) ) -> ( ( U ` i ) ` t ) < E ) |
144 |
143
|
3impa |
|- ( ( ph /\ i e. ( 1 ... M ) /\ t e. ( W ` i ) ) -> ( ( U ` i ) ` t ) < E ) |
145 |
134 142 144
|
chvarfv |
|- ( ( ph /\ j e. ( 1 ... M ) /\ t e. ( W ` j ) ) -> ( ( U ` j ) ` t ) < E ) |
146 |
127 128 129 145
|
syl3anc |
|- ( ( ( ( ph /\ t e. D ) /\ j e. ( 1 ... M ) ) /\ t e. ( W ` j ) ) -> ( ( U ` j ) ` t ) < E ) |
147 |
146
|
ex |
|- ( ( ( ph /\ t e. D ) /\ j e. ( 1 ... M ) ) -> ( t e. ( W ` j ) -> ( ( U ` j ) ` t ) < E ) ) |
148 |
147
|
reximdva |
|- ( ( ph /\ t e. D ) -> ( E. j e. ( 1 ... M ) t e. ( W ` j ) -> E. j e. ( 1 ... M ) ( ( U ` j ) ` t ) < E ) ) |
149 |
126 148
|
mpd |
|- ( ( ph /\ t e. D ) -> E. j e. ( 1 ... M ) ( ( U ` j ) ` t ) < E ) |
150 |
86 130
|
nfan |
|- F/ i ( ( ph /\ t e. D ) /\ j e. ( 1 ... M ) ) |
151 |
|
nfcv |
|- F/_ i j |
152 |
84 151
|
nffv |
|- F/_ i ( ( F ` t ) ` j ) |
153 |
152
|
nfeq1 |
|- F/ i ( ( F ` t ) ` j ) = ( ( U ` j ) ` t ) |
154 |
150 153
|
nfim |
|- F/ i ( ( ( ph /\ t e. D ) /\ j e. ( 1 ... M ) ) -> ( ( F ` t ) ` j ) = ( ( U ` j ) ` t ) ) |
155 |
135
|
anbi2d |
|- ( i = j -> ( ( ( ph /\ t e. D ) /\ i e. ( 1 ... M ) ) <-> ( ( ph /\ t e. D ) /\ j e. ( 1 ... M ) ) ) ) |
156 |
|
fveq2 |
|- ( i = j -> ( ( F ` t ) ` i ) = ( ( F ` t ) ` j ) ) |
157 |
156 140
|
eqeq12d |
|- ( i = j -> ( ( ( F ` t ) ` i ) = ( ( U ` i ) ` t ) <-> ( ( F ` t ) ` j ) = ( ( U ` j ) ` t ) ) ) |
158 |
155 157
|
imbi12d |
|- ( i = j -> ( ( ( ( ph /\ t e. D ) /\ i e. ( 1 ... M ) ) -> ( ( F ` t ) ` i ) = ( ( U ` i ) ` t ) ) <-> ( ( ( ph /\ t e. D ) /\ j e. ( 1 ... M ) ) -> ( ( F ` t ) ` j ) = ( ( U ` j ) ` t ) ) ) ) |
159 |
154 158 102
|
chvarfv |
|- ( ( ( ph /\ t e. D ) /\ j e. ( 1 ... M ) ) -> ( ( F ` t ) ` j ) = ( ( U ` j ) ` t ) ) |
160 |
159
|
breq1d |
|- ( ( ( ph /\ t e. D ) /\ j e. ( 1 ... M ) ) -> ( ( ( F ` t ) ` j ) < E <-> ( ( U ` j ) ` t ) < E ) ) |
161 |
160
|
biimprd |
|- ( ( ( ph /\ t e. D ) /\ j e. ( 1 ... M ) ) -> ( ( ( U ` j ) ` t ) < E -> ( ( F ` t ) ` j ) < E ) ) |
162 |
161
|
reximdva |
|- ( ( ph /\ t e. D ) -> ( E. j e. ( 1 ... M ) ( ( U ` j ) ` t ) < E -> E. j e. ( 1 ... M ) ( ( F ` t ) ` j ) < E ) ) |
163 |
149 162
|
mpd |
|- ( ( ph /\ t e. D ) -> E. j e. ( 1 ... M ) ( ( F ` t ) ` j ) < E ) |
164 |
84 86 87 88 89 72 103 106 107 163
|
fmul01lt1 |
|- ( ( ph /\ t e. D ) -> ( seq 1 ( x. , ( F ` t ) ) ` M ) < E ) |
165 |
78 164
|
eqbrtrd |
|- ( ( ph /\ t e. D ) -> ( Z ` t ) < E ) |
166 |
36 165
|
eqbrtrd |
|- ( ( ph /\ t e. D ) -> ( X ` t ) < E ) |
167 |
166
|
ex |
|- ( ph -> ( t e. D -> ( X ` t ) < E ) ) |
168 |
2 167
|
ralrimi |
|- ( ph -> A. t e. D ( X ` t ) < E ) |