| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							stoweidlem53.1 | 
							 |-  F/_ t U  | 
						
						
							| 2 | 
							
								
							 | 
							stoweidlem53.2 | 
							 |-  F/ t ph  | 
						
						
							| 3 | 
							
								
							 | 
							stoweidlem53.3 | 
							 |-  K = ( topGen ` ran (,) )  | 
						
						
							| 4 | 
							
								
							 | 
							stoweidlem53.4 | 
							 |-  Q = { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) } | 
						
						
							| 5 | 
							
								
							 | 
							stoweidlem53.5 | 
							 |-  W = { w e. J | E. h e. Q w = { t e. T | 0 < ( h ` t ) } } | 
						
						
							| 6 | 
							
								
							 | 
							stoweidlem53.6 | 
							 |-  T = U. J  | 
						
						
							| 7 | 
							
								
							 | 
							stoweidlem53.7 | 
							 |-  C = ( J Cn K )  | 
						
						
							| 8 | 
							
								
							 | 
							stoweidlem53.8 | 
							 |-  ( ph -> J e. Comp )  | 
						
						
							| 9 | 
							
								
							 | 
							stoweidlem53.9 | 
							 |-  ( ph -> A C_ C )  | 
						
						
							| 10 | 
							
								
							 | 
							stoweidlem53.10 | 
							 |-  ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A )  | 
						
						
							| 11 | 
							
								
							 | 
							stoweidlem53.11 | 
							 |-  ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A )  | 
						
						
							| 12 | 
							
								
							 | 
							stoweidlem53.12 | 
							 |-  ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A )  | 
						
						
							| 13 | 
							
								
							 | 
							stoweidlem53.13 | 
							 |-  ( ( ph /\ ( r e. T /\ t e. T /\ r =/= t ) ) -> E. q e. A ( q ` r ) =/= ( q ` t ) )  | 
						
						
							| 14 | 
							
								
							 | 
							stoweidlem53.14 | 
							 |-  ( ph -> U e. J )  | 
						
						
							| 15 | 
							
								
							 | 
							stoweidlem53.15 | 
							 |-  ( ph -> ( T \ U ) =/= (/) )  | 
						
						
							| 16 | 
							
								
							 | 
							stoweidlem53.16 | 
							 |-  ( ph -> Z e. U )  | 
						
						
							| 17 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 16
							 | 
							stoweidlem50 | 
							 |-  ( ph -> E. u ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) )  | 
						
						
							| 18 | 
							
								
							 | 
							nfv | 
							 |-  F/ t u e. Fin  | 
						
						
							| 19 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ t u  | 
						
						
							| 20 | 
							
								
							 | 
							nfv | 
							 |-  F/ t ( h ` Z ) = 0  | 
						
						
							| 21 | 
							
								
							 | 
							nfra1 | 
							 |-  F/ t A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							nfan | 
							 |-  F/ t ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ t A  | 
						
						
							| 24 | 
							
								22 23
							 | 
							nfrabw | 
							 |-  F/_ t { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) } | 
						
						
							| 25 | 
							
								4 24
							 | 
							nfcxfr | 
							 |-  F/_ t Q  | 
						
						
							| 26 | 
							
								
							 | 
							nfrab1 | 
							 |-  F/_ t { t e. T | 0 < ( h ` t ) } | 
						
						
							| 27 | 
							
								26
							 | 
							nfeq2 | 
							 |-  F/ t w = { t e. T | 0 < ( h ` t ) } | 
						
						
							| 28 | 
							
								25 27
							 | 
							nfrexw | 
							 |-  F/ t E. h e. Q w = { t e. T | 0 < ( h ` t ) } | 
						
						
							| 29 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ t J  | 
						
						
							| 30 | 
							
								28 29
							 | 
							nfrabw | 
							 |-  F/_ t { w e. J | E. h e. Q w = { t e. T | 0 < ( h ` t ) } } | 
						
						
							| 31 | 
							
								5 30
							 | 
							nfcxfr | 
							 |-  F/_ t W  | 
						
						
							| 32 | 
							
								19 31
							 | 
							nfss | 
							 |-  F/ t u C_ W  | 
						
						
							| 33 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ t T  | 
						
						
							| 34 | 
							
								33 1
							 | 
							nfdif | 
							 |-  F/_ t ( T \ U )  | 
						
						
							| 35 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ t U. u  | 
						
						
							| 36 | 
							
								34 35
							 | 
							nfss | 
							 |-  F/ t ( T \ U ) C_ U. u  | 
						
						
							| 37 | 
							
								18 32 36
							 | 
							nf3an | 
							 |-  F/ t ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u )  | 
						
						
							| 38 | 
							
								2 37
							 | 
							nfan | 
							 |-  F/ t ( ph /\ ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) )  | 
						
						
							| 39 | 
							
								
							 | 
							nfv | 
							 |-  F/ w ph  | 
						
						
							| 40 | 
							
								
							 | 
							nfv | 
							 |-  F/ w u e. Fin  | 
						
						
							| 41 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ w u  | 
						
						
							| 42 | 
							
								
							 | 
							nfrab1 | 
							 |-  F/_ w { w e. J | E. h e. Q w = { t e. T | 0 < ( h ` t ) } } | 
						
						
							| 43 | 
							
								5 42
							 | 
							nfcxfr | 
							 |-  F/_ w W  | 
						
						
							| 44 | 
							
								41 43
							 | 
							nfss | 
							 |-  F/ w u C_ W  | 
						
						
							| 45 | 
							
								
							 | 
							nfv | 
							 |-  F/ w ( T \ U ) C_ U. u  | 
						
						
							| 46 | 
							
								40 44 45
							 | 
							nf3an | 
							 |-  F/ w ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u )  | 
						
						
							| 47 | 
							
								39 46
							 | 
							nfan | 
							 |-  F/ w ( ph /\ ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) )  | 
						
						
							| 48 | 
							
								
							 | 
							nfv | 
							 |-  F/ h ph  | 
						
						
							| 49 | 
							
								
							 | 
							nfv | 
							 |-  F/ h u e. Fin  | 
						
						
							| 50 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ h u  | 
						
						
							| 51 | 
							
								
							 | 
							nfre1 | 
							 |-  F/ h E. h e. Q w = { t e. T | 0 < ( h ` t ) } | 
						
						
							| 52 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ h J  | 
						
						
							| 53 | 
							
								51 52
							 | 
							nfrabw | 
							 |-  F/_ h { w e. J | E. h e. Q w = { t e. T | 0 < ( h ` t ) } } | 
						
						
							| 54 | 
							
								5 53
							 | 
							nfcxfr | 
							 |-  F/_ h W  | 
						
						
							| 55 | 
							
								50 54
							 | 
							nfss | 
							 |-  F/ h u C_ W  | 
						
						
							| 56 | 
							
								
							 | 
							nfv | 
							 |-  F/ h ( T \ U ) C_ U. u  | 
						
						
							| 57 | 
							
								49 55 56
							 | 
							nf3an | 
							 |-  F/ h ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u )  | 
						
						
							| 58 | 
							
								48 57
							 | 
							nfan | 
							 |-  F/ h ( ph /\ ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) )  | 
						
						
							| 59 | 
							
								
							 | 
							eqid | 
							 |-  ( w e. u |-> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) = ( w e. u |-> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) | 
						
						
							| 60 | 
							
								
							 | 
							cmptop | 
							 |-  ( J e. Comp -> J e. Top )  | 
						
						
							| 61 | 
							
								8 60
							 | 
							syl | 
							 |-  ( ph -> J e. Top )  | 
						
						
							| 62 | 
							
								
							 | 
							retop | 
							 |-  ( topGen ` ran (,) ) e. Top  | 
						
						
							| 63 | 
							
								3 62
							 | 
							eqeltri | 
							 |-  K e. Top  | 
						
						
							| 64 | 
							
								
							 | 
							cnfex | 
							 |-  ( ( J e. Top /\ K e. Top ) -> ( J Cn K ) e. _V )  | 
						
						
							| 65 | 
							
								61 63 64
							 | 
							sylancl | 
							 |-  ( ph -> ( J Cn K ) e. _V )  | 
						
						
							| 66 | 
							
								9 7
							 | 
							sseqtrdi | 
							 |-  ( ph -> A C_ ( J Cn K ) )  | 
						
						
							| 67 | 
							
								65 66
							 | 
							ssexd | 
							 |-  ( ph -> A e. _V )  | 
						
						
							| 68 | 
							
								67
							 | 
							adantr | 
							 |-  ( ( ph /\ ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) ) -> A e. _V )  | 
						
						
							| 69 | 
							
								
							 | 
							simpr1 | 
							 |-  ( ( ph /\ ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) ) -> u e. Fin )  | 
						
						
							| 70 | 
							
								
							 | 
							simpr2 | 
							 |-  ( ( ph /\ ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) ) -> u C_ W )  | 
						
						
							| 71 | 
							
								
							 | 
							simpr3 | 
							 |-  ( ( ph /\ ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) ) -> ( T \ U ) C_ U. u )  | 
						
						
							| 72 | 
							
								15
							 | 
							adantr | 
							 |-  ( ( ph /\ ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) ) -> ( T \ U ) =/= (/) )  | 
						
						
							| 73 | 
							
								38 47 58 4 5 59 68 69 70 71 72
							 | 
							stoweidlem35 | 
							 |-  ( ( ph /\ ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) ) -> E. m E. q ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) )  | 
						
						
							| 74 | 
							
								17 73
							 | 
							exlimddv | 
							 |-  ( ph -> E. m E. q ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) )  | 
						
						
							| 75 | 
							
								
							 | 
							nfv | 
							 |-  F/ i ph  | 
						
						
							| 76 | 
							
								
							 | 
							nfv | 
							 |-  F/ i m e. NN  | 
						
						
							| 77 | 
							
								
							 | 
							nfv | 
							 |-  F/ i q : ( 1 ... m ) --> Q  | 
						
						
							| 78 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ i ( T \ U )  | 
						
						
							| 79 | 
							
								
							 | 
							nfre1 | 
							 |-  F/ i E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t )  | 
						
						
							| 80 | 
							
								78 79
							 | 
							nfralw | 
							 |-  F/ i A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t )  | 
						
						
							| 81 | 
							
								77 80
							 | 
							nfan | 
							 |-  F/ i ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) )  | 
						
						
							| 82 | 
							
								76 81
							 | 
							nfan | 
							 |-  F/ i ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) )  | 
						
						
							| 83 | 
							
								75 82
							 | 
							nfan | 
							 |-  F/ i ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) )  | 
						
						
							| 84 | 
							
								
							 | 
							nfv | 
							 |-  F/ t m e. NN  | 
						
						
							| 85 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ t q  | 
						
						
							| 86 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ t ( 1 ... m )  | 
						
						
							| 87 | 
							
								85 86 25
							 | 
							nff | 
							 |-  F/ t q : ( 1 ... m ) --> Q  | 
						
						
							| 88 | 
							
								
							 | 
							nfra1 | 
							 |-  F/ t A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t )  | 
						
						
							| 89 | 
							
								87 88
							 | 
							nfan | 
							 |-  F/ t ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) )  | 
						
						
							| 90 | 
							
								84 89
							 | 
							nfan | 
							 |-  F/ t ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) )  | 
						
						
							| 91 | 
							
								2 90
							 | 
							nfan | 
							 |-  F/ t ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) )  | 
						
						
							| 92 | 
							
								
							 | 
							eqid | 
							 |-  ( t e. T |-> ( ( 1 / m ) x. sum_ y e. ( 1 ... m ) ( ( q ` y ) ` t ) ) ) = ( t e. T |-> ( ( 1 / m ) x. sum_ y e. ( 1 ... m ) ( ( q ` y ) ` t ) ) )  | 
						
						
							| 93 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) -> m e. NN )  | 
						
						
							| 94 | 
							
								
							 | 
							simprrl | 
							 |-  ( ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) -> q : ( 1 ... m ) --> Q )  | 
						
						
							| 95 | 
							
								
							 | 
							simprrr | 
							 |-  ( ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) -> A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) )  | 
						
						
							| 96 | 
							
								66
							 | 
							adantr | 
							 |-  ( ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) -> A C_ ( J Cn K ) )  | 
						
						
							| 97 | 
							
								10
							 | 
							3adant1r | 
							 |-  ( ( ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A )  | 
						
						
							| 98 | 
							
								11
							 | 
							3adant1r | 
							 |-  ( ( ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A )  | 
						
						
							| 99 | 
							
								12
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) /\ x e. RR ) -> ( t e. T |-> x ) e. A )  | 
						
						
							| 100 | 
							
								
							 | 
							elssuni | 
							 |-  ( U e. J -> U C_ U. J )  | 
						
						
							| 101 | 
							
								100 6
							 | 
							sseqtrrdi | 
							 |-  ( U e. J -> U C_ T )  | 
						
						
							| 102 | 
							
								14 101
							 | 
							syl | 
							 |-  ( ph -> U C_ T )  | 
						
						
							| 103 | 
							
								102 16
							 | 
							sseldd | 
							 |-  ( ph -> Z e. T )  | 
						
						
							| 104 | 
							
								103
							 | 
							adantr | 
							 |-  ( ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) -> Z e. T )  | 
						
						
							| 105 | 
							
								83 91 3 4 92 93 94 95 6 96 97 98 99 104
							 | 
							stoweidlem44 | 
							 |-  ( ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) -> E. p e. A ( A. t e. T ( 0 <_ ( p ` t ) /\ ( p ` t ) <_ 1 ) /\ ( p ` Z ) = 0 /\ A. t e. ( T \ U ) 0 < ( p ` t ) ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							ex | 
							 |-  ( ph -> ( ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) -> E. p e. A ( A. t e. T ( 0 <_ ( p ` t ) /\ ( p ` t ) <_ 1 ) /\ ( p ` Z ) = 0 /\ A. t e. ( T \ U ) 0 < ( p ` t ) ) ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							exlimdvv | 
							 |-  ( ph -> ( E. m E. q ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) -> E. p e. A ( A. t e. T ( 0 <_ ( p ` t ) /\ ( p ` t ) <_ 1 ) /\ ( p ` Z ) = 0 /\ A. t e. ( T \ U ) 0 < ( p ` t ) ) ) )  | 
						
						
							| 108 | 
							
								74 107
							 | 
							mpd | 
							 |-  ( ph -> E. p e. A ( A. t e. T ( 0 <_ ( p ` t ) /\ ( p ` t ) <_ 1 ) /\ ( p ` Z ) = 0 /\ A. t e. ( T \ U ) 0 < ( p ` t ) ) )  |