| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem6.1 |  |-  F/ t f = F | 
						
							| 2 |  | stoweidlem6.2 |  |-  F/ t g = G | 
						
							| 3 |  | stoweidlem6.3 |  |-  ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) | 
						
							| 4 |  | simp3 |  |-  ( ( ph /\ F e. A /\ G e. A ) -> G e. A ) | 
						
							| 5 |  | eleq1 |  |-  ( g = G -> ( g e. A <-> G e. A ) ) | 
						
							| 6 | 5 | 3anbi3d |  |-  ( g = G -> ( ( ph /\ F e. A /\ g e. A ) <-> ( ph /\ F e. A /\ G e. A ) ) ) | 
						
							| 7 |  | fveq1 |  |-  ( g = G -> ( g ` t ) = ( G ` t ) ) | 
						
							| 8 | 7 | oveq2d |  |-  ( g = G -> ( ( F ` t ) x. ( g ` t ) ) = ( ( F ` t ) x. ( G ` t ) ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( g = G /\ t e. T ) -> ( ( F ` t ) x. ( g ` t ) ) = ( ( F ` t ) x. ( G ` t ) ) ) | 
						
							| 10 | 2 9 | mpteq2da |  |-  ( g = G -> ( t e. T |-> ( ( F ` t ) x. ( g ` t ) ) ) = ( t e. T |-> ( ( F ` t ) x. ( G ` t ) ) ) ) | 
						
							| 11 | 10 | eleq1d |  |-  ( g = G -> ( ( t e. T |-> ( ( F ` t ) x. ( g ` t ) ) ) e. A <-> ( t e. T |-> ( ( F ` t ) x. ( G ` t ) ) ) e. A ) ) | 
						
							| 12 | 6 11 | imbi12d |  |-  ( g = G -> ( ( ( ph /\ F e. A /\ g e. A ) -> ( t e. T |-> ( ( F ` t ) x. ( g ` t ) ) ) e. A ) <-> ( ( ph /\ F e. A /\ G e. A ) -> ( t e. T |-> ( ( F ` t ) x. ( G ` t ) ) ) e. A ) ) ) | 
						
							| 13 |  | simp2 |  |-  ( ( ph /\ F e. A /\ g e. A ) -> F e. A ) | 
						
							| 14 |  | eleq1 |  |-  ( f = F -> ( f e. A <-> F e. A ) ) | 
						
							| 15 | 14 | 3anbi2d |  |-  ( f = F -> ( ( ph /\ f e. A /\ g e. A ) <-> ( ph /\ F e. A /\ g e. A ) ) ) | 
						
							| 16 |  | fveq1 |  |-  ( f = F -> ( f ` t ) = ( F ` t ) ) | 
						
							| 17 | 16 | oveq1d |  |-  ( f = F -> ( ( f ` t ) x. ( g ` t ) ) = ( ( F ` t ) x. ( g ` t ) ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( f = F /\ t e. T ) -> ( ( f ` t ) x. ( g ` t ) ) = ( ( F ` t ) x. ( g ` t ) ) ) | 
						
							| 19 | 1 18 | mpteq2da |  |-  ( f = F -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) = ( t e. T |-> ( ( F ` t ) x. ( g ` t ) ) ) ) | 
						
							| 20 | 19 | eleq1d |  |-  ( f = F -> ( ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A <-> ( t e. T |-> ( ( F ` t ) x. ( g ` t ) ) ) e. A ) ) | 
						
							| 21 | 15 20 | imbi12d |  |-  ( f = F -> ( ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) <-> ( ( ph /\ F e. A /\ g e. A ) -> ( t e. T |-> ( ( F ` t ) x. ( g ` t ) ) ) e. A ) ) ) | 
						
							| 22 | 21 3 | vtoclg |  |-  ( F e. A -> ( ( ph /\ F e. A /\ g e. A ) -> ( t e. T |-> ( ( F ` t ) x. ( g ` t ) ) ) e. A ) ) | 
						
							| 23 | 13 22 | mpcom |  |-  ( ( ph /\ F e. A /\ g e. A ) -> ( t e. T |-> ( ( F ` t ) x. ( g ` t ) ) ) e. A ) | 
						
							| 24 | 12 23 | vtoclg |  |-  ( G e. A -> ( ( ph /\ F e. A /\ G e. A ) -> ( t e. T |-> ( ( F ` t ) x. ( G ` t ) ) ) e. A ) ) | 
						
							| 25 | 4 24 | mpcom |  |-  ( ( ph /\ F e. A /\ G e. A ) -> ( t e. T |-> ( ( F ` t ) x. ( G ` t ) ) ) e. A ) |