Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem61.1 |
|- F/_ t F |
2 |
|
stoweidlem61.2 |
|- F/ t ph |
3 |
|
stoweidlem61.3 |
|- K = ( topGen ` ran (,) ) |
4 |
|
stoweidlem61.4 |
|- ( ph -> J e. Comp ) |
5 |
|
stoweidlem61.5 |
|- T = U. J |
6 |
|
stoweidlem61.6 |
|- ( ph -> T =/= (/) ) |
7 |
|
stoweidlem61.7 |
|- C = ( J Cn K ) |
8 |
|
stoweidlem61.8 |
|- ( ph -> A C_ C ) |
9 |
|
stoweidlem61.9 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
10 |
|
stoweidlem61.10 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
11 |
|
stoweidlem61.11 |
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
12 |
|
stoweidlem61.12 |
|- ( ( ph /\ ( r e. T /\ t e. T /\ r =/= t ) ) -> E. q e. A ( q ` r ) =/= ( q ` t ) ) |
13 |
|
stoweidlem61.13 |
|- ( ph -> F e. C ) |
14 |
|
stoweidlem61.14 |
|- ( ph -> A. t e. T 0 <_ ( F ` t ) ) |
15 |
|
stoweidlem61.15 |
|- ( ph -> E e. RR+ ) |
16 |
|
stoweidlem61.16 |
|- ( ph -> E < ( 1 / 3 ) ) |
17 |
|
eqid |
|- ( j e. ( 0 ... n ) |-> { t e. T | ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) } ) = ( j e. ( 0 ... n ) |-> { t e. T | ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) } ) |
18 |
|
eqid |
|- ( j e. ( 0 ... n ) |-> { t e. T | ( ( j + ( 1 / 3 ) ) x. E ) <_ ( F ` t ) } ) = ( j e. ( 0 ... n ) |-> { t e. T | ( ( j + ( 1 / 3 ) ) x. E ) <_ ( F ` t ) } ) |
19 |
1 2 3 5 7 17 18 4 6 8 9 10 11 12 13 14 15 16
|
stoweidlem60 |
|- ( ph -> E. g e. A A. t e. T E. j e. RR ( ( ( ( j - ( 4 / 3 ) ) x. E ) < ( F ` t ) /\ ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) ) /\ ( ( g ` t ) < ( ( j + ( 1 / 3 ) ) x. E ) /\ ( ( j - ( 4 / 3 ) ) x. E ) < ( g ` t ) ) ) ) |
20 |
|
nfv |
|- F/ t g e. A |
21 |
2 20
|
nfan |
|- F/ t ( ph /\ g e. A ) |
22 |
15
|
ad2antrr |
|- ( ( ( ph /\ g e. A ) /\ t e. T ) -> E e. RR+ ) |
23 |
3 5 7 13
|
fcnre |
|- ( ph -> F : T --> RR ) |
24 |
23
|
ffvelrnda |
|- ( ( ph /\ t e. T ) -> ( F ` t ) e. RR ) |
25 |
24
|
adantlr |
|- ( ( ( ph /\ g e. A ) /\ t e. T ) -> ( F ` t ) e. RR ) |
26 |
8
|
sselda |
|- ( ( ph /\ g e. A ) -> g e. C ) |
27 |
3 5 7 26
|
fcnre |
|- ( ( ph /\ g e. A ) -> g : T --> RR ) |
28 |
27
|
ffvelrnda |
|- ( ( ( ph /\ g e. A ) /\ t e. T ) -> ( g ` t ) e. RR ) |
29 |
|
simpll1 |
|- ( ( ( ( E e. RR+ /\ ( F ` t ) e. RR /\ ( g ` t ) e. RR ) /\ j e. RR ) /\ ( ( ( ( j - ( 4 / 3 ) ) x. E ) < ( F ` t ) /\ ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) ) /\ ( ( g ` t ) < ( ( j + ( 1 / 3 ) ) x. E ) /\ ( ( j - ( 4 / 3 ) ) x. E ) < ( g ` t ) ) ) ) -> E e. RR+ ) |
30 |
|
simpll2 |
|- ( ( ( ( E e. RR+ /\ ( F ` t ) e. RR /\ ( g ` t ) e. RR ) /\ j e. RR ) /\ ( ( ( ( j - ( 4 / 3 ) ) x. E ) < ( F ` t ) /\ ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) ) /\ ( ( g ` t ) < ( ( j + ( 1 / 3 ) ) x. E ) /\ ( ( j - ( 4 / 3 ) ) x. E ) < ( g ` t ) ) ) ) -> ( F ` t ) e. RR ) |
31 |
|
simpll3 |
|- ( ( ( ( E e. RR+ /\ ( F ` t ) e. RR /\ ( g ` t ) e. RR ) /\ j e. RR ) /\ ( ( ( ( j - ( 4 / 3 ) ) x. E ) < ( F ` t ) /\ ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) ) /\ ( ( g ` t ) < ( ( j + ( 1 / 3 ) ) x. E ) /\ ( ( j - ( 4 / 3 ) ) x. E ) < ( g ` t ) ) ) ) -> ( g ` t ) e. RR ) |
32 |
|
simplr |
|- ( ( ( ( E e. RR+ /\ ( F ` t ) e. RR /\ ( g ` t ) e. RR ) /\ j e. RR ) /\ ( ( ( ( j - ( 4 / 3 ) ) x. E ) < ( F ` t ) /\ ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) ) /\ ( ( g ` t ) < ( ( j + ( 1 / 3 ) ) x. E ) /\ ( ( j - ( 4 / 3 ) ) x. E ) < ( g ` t ) ) ) ) -> j e. RR ) |
33 |
|
simprll |
|- ( ( ( ( E e. RR+ /\ ( F ` t ) e. RR /\ ( g ` t ) e. RR ) /\ j e. RR ) /\ ( ( ( ( j - ( 4 / 3 ) ) x. E ) < ( F ` t ) /\ ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) ) /\ ( ( g ` t ) < ( ( j + ( 1 / 3 ) ) x. E ) /\ ( ( j - ( 4 / 3 ) ) x. E ) < ( g ` t ) ) ) ) -> ( ( j - ( 4 / 3 ) ) x. E ) < ( F ` t ) ) |
34 |
|
simprlr |
|- ( ( ( ( E e. RR+ /\ ( F ` t ) e. RR /\ ( g ` t ) e. RR ) /\ j e. RR ) /\ ( ( ( ( j - ( 4 / 3 ) ) x. E ) < ( F ` t ) /\ ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) ) /\ ( ( g ` t ) < ( ( j + ( 1 / 3 ) ) x. E ) /\ ( ( j - ( 4 / 3 ) ) x. E ) < ( g ` t ) ) ) ) -> ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) ) |
35 |
|
simprrr |
|- ( ( ( ( E e. RR+ /\ ( F ` t ) e. RR /\ ( g ` t ) e. RR ) /\ j e. RR ) /\ ( ( ( ( j - ( 4 / 3 ) ) x. E ) < ( F ` t ) /\ ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) ) /\ ( ( g ` t ) < ( ( j + ( 1 / 3 ) ) x. E ) /\ ( ( j - ( 4 / 3 ) ) x. E ) < ( g ` t ) ) ) ) -> ( ( j - ( 4 / 3 ) ) x. E ) < ( g ` t ) ) |
36 |
|
simprrl |
|- ( ( ( ( E e. RR+ /\ ( F ` t ) e. RR /\ ( g ` t ) e. RR ) /\ j e. RR ) /\ ( ( ( ( j - ( 4 / 3 ) ) x. E ) < ( F ` t ) /\ ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) ) /\ ( ( g ` t ) < ( ( j + ( 1 / 3 ) ) x. E ) /\ ( ( j - ( 4 / 3 ) ) x. E ) < ( g ` t ) ) ) ) -> ( g ` t ) < ( ( j + ( 1 / 3 ) ) x. E ) ) |
37 |
29 30 31 32 33 34 35 36
|
stoweidlem13 |
|- ( ( ( ( E e. RR+ /\ ( F ` t ) e. RR /\ ( g ` t ) e. RR ) /\ j e. RR ) /\ ( ( ( ( j - ( 4 / 3 ) ) x. E ) < ( F ` t ) /\ ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) ) /\ ( ( g ` t ) < ( ( j + ( 1 / 3 ) ) x. E ) /\ ( ( j - ( 4 / 3 ) ) x. E ) < ( g ` t ) ) ) ) -> ( abs ` ( ( g ` t ) - ( F ` t ) ) ) < ( 2 x. E ) ) |
38 |
37
|
rexlimdva2 |
|- ( ( E e. RR+ /\ ( F ` t ) e. RR /\ ( g ` t ) e. RR ) -> ( E. j e. RR ( ( ( ( j - ( 4 / 3 ) ) x. E ) < ( F ` t ) /\ ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) ) /\ ( ( g ` t ) < ( ( j + ( 1 / 3 ) ) x. E ) /\ ( ( j - ( 4 / 3 ) ) x. E ) < ( g ` t ) ) ) -> ( abs ` ( ( g ` t ) - ( F ` t ) ) ) < ( 2 x. E ) ) ) |
39 |
22 25 28 38
|
syl3anc |
|- ( ( ( ph /\ g e. A ) /\ t e. T ) -> ( E. j e. RR ( ( ( ( j - ( 4 / 3 ) ) x. E ) < ( F ` t ) /\ ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) ) /\ ( ( g ` t ) < ( ( j + ( 1 / 3 ) ) x. E ) /\ ( ( j - ( 4 / 3 ) ) x. E ) < ( g ` t ) ) ) -> ( abs ` ( ( g ` t ) - ( F ` t ) ) ) < ( 2 x. E ) ) ) |
40 |
21 39
|
ralimdaa |
|- ( ( ph /\ g e. A ) -> ( A. t e. T E. j e. RR ( ( ( ( j - ( 4 / 3 ) ) x. E ) < ( F ` t ) /\ ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) ) /\ ( ( g ` t ) < ( ( j + ( 1 / 3 ) ) x. E ) /\ ( ( j - ( 4 / 3 ) ) x. E ) < ( g ` t ) ) ) -> A. t e. T ( abs ` ( ( g ` t ) - ( F ` t ) ) ) < ( 2 x. E ) ) ) |
41 |
40
|
reximdva |
|- ( ph -> ( E. g e. A A. t e. T E. j e. RR ( ( ( ( j - ( 4 / 3 ) ) x. E ) < ( F ` t ) /\ ( F ` t ) <_ ( ( j - ( 1 / 3 ) ) x. E ) ) /\ ( ( g ` t ) < ( ( j + ( 1 / 3 ) ) x. E ) /\ ( ( j - ( 4 / 3 ) ) x. E ) < ( g ` t ) ) ) -> E. g e. A A. t e. T ( abs ` ( ( g ` t ) - ( F ` t ) ) ) < ( 2 x. E ) ) ) |
42 |
19 41
|
mpd |
|- ( ph -> E. g e. A A. t e. T ( abs ` ( ( g ` t ) - ( F ` t ) ) ) < ( 2 x. E ) ) |