Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem9.1 |
|- ( ph -> T = (/) ) |
2 |
|
stoweidlem9.2 |
|- ( ph -> ( t e. T |-> 1 ) e. A ) |
3 |
|
mpteq1 |
|- ( T = (/) -> ( t e. T |-> 1 ) = ( t e. (/) |-> 1 ) ) |
4 |
|
mpt0 |
|- ( t e. (/) |-> 1 ) = (/) |
5 |
3 4
|
eqtrdi |
|- ( T = (/) -> ( t e. T |-> 1 ) = (/) ) |
6 |
1 5
|
syl |
|- ( ph -> ( t e. T |-> 1 ) = (/) ) |
7 |
6 2
|
eqeltrrd |
|- ( ph -> (/) e. A ) |
8 |
|
rzal |
|- ( T = (/) -> A. t e. T ( abs ` ( ( (/) ` t ) - ( F ` t ) ) ) < E ) |
9 |
1 8
|
syl |
|- ( ph -> A. t e. T ( abs ` ( ( (/) ` t ) - ( F ` t ) ) ) < E ) |
10 |
|
fveq1 |
|- ( g = (/) -> ( g ` t ) = ( (/) ` t ) ) |
11 |
10
|
fvoveq1d |
|- ( g = (/) -> ( abs ` ( ( g ` t ) - ( F ` t ) ) ) = ( abs ` ( ( (/) ` t ) - ( F ` t ) ) ) ) |
12 |
11
|
breq1d |
|- ( g = (/) -> ( ( abs ` ( ( g ` t ) - ( F ` t ) ) ) < E <-> ( abs ` ( ( (/) ` t ) - ( F ` t ) ) ) < E ) ) |
13 |
12
|
ralbidv |
|- ( g = (/) -> ( A. t e. T ( abs ` ( ( g ` t ) - ( F ` t ) ) ) < E <-> A. t e. T ( abs ` ( ( (/) ` t ) - ( F ` t ) ) ) < E ) ) |
14 |
13
|
rspcev |
|- ( ( (/) e. A /\ A. t e. T ( abs ` ( ( (/) ` t ) - ( F ` t ) ) ) < E ) -> E. g e. A A. t e. T ( abs ` ( ( g ` t ) - ( F ` t ) ) ) < E ) |
15 |
7 9 14
|
syl2anc |
|- ( ph -> E. g e. A A. t e. T ( abs ` ( ( g ` t ) - ( F ` t ) ) ) < E ) |