Metamath Proof Explorer


Theorem strfv2

Description: A variation on strfv to avoid asserting that S itself is a function, which involves sethood of all the ordered pair components of S . (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses strfv2.s
|- S e. _V
strfv2.f
|- Fun `' `' S
strfv2.e
|- E = Slot ( E ` ndx )
strfv2.n
|- <. ( E ` ndx ) , C >. e. S
Assertion strfv2
|- ( C e. V -> C = ( E ` S ) )

Proof

Step Hyp Ref Expression
1 strfv2.s
 |-  S e. _V
2 strfv2.f
 |-  Fun `' `' S
3 strfv2.e
 |-  E = Slot ( E ` ndx )
4 strfv2.n
 |-  <. ( E ` ndx ) , C >. e. S
5 1 a1i
 |-  ( C e. V -> S e. _V )
6 2 a1i
 |-  ( C e. V -> Fun `' `' S )
7 4 a1i
 |-  ( C e. V -> <. ( E ` ndx ) , C >. e. S )
8 id
 |-  ( C e. V -> C e. V )
9 3 5 6 7 8 strfv2d
 |-  ( C e. V -> C = ( E ` S ) )