Description: A variation on strfv to avoid asserting that S itself is a function, which involves sethood of all the ordered pair components of S . (Contributed by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | strfv2.s | |- S e. _V |
|
| strfv2.f | |- Fun `' `' S |
||
| strfv2.e | |- E = Slot ( E ` ndx ) |
||
| strfv2.n | |- <. ( E ` ndx ) , C >. e. S |
||
| Assertion | strfv2 | |- ( C e. V -> C = ( E ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfv2.s | |- S e. _V |
|
| 2 | strfv2.f | |- Fun `' `' S |
|
| 3 | strfv2.e | |- E = Slot ( E ` ndx ) |
|
| 4 | strfv2.n | |- <. ( E ` ndx ) , C >. e. S |
|
| 5 | 1 | a1i | |- ( C e. V -> S e. _V ) |
| 6 | 2 | a1i | |- ( C e. V -> Fun `' `' S ) |
| 7 | 4 | a1i | |- ( C e. V -> <. ( E ` ndx ) , C >. e. S ) |
| 8 | id | |- ( C e. V -> C e. V ) |
|
| 9 | 3 5 6 7 8 | strfv2d | |- ( C e. V -> C = ( E ` S ) ) |