Description: Variant on strfv for large structures. (Contributed by Mario Carneiro, 10-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | strfv3.u | |- ( ph -> U = S ) |
|
strfv3.s | |- S Struct X |
||
strfv3.e | |- E = Slot ( E ` ndx ) |
||
strfv3.n | |- { <. ( E ` ndx ) , C >. } C_ S |
||
strfv3.c | |- ( ph -> C e. V ) |
||
strfv3.a | |- A = ( E ` U ) |
||
Assertion | strfv3 | |- ( ph -> A = C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfv3.u | |- ( ph -> U = S ) |
|
2 | strfv3.s | |- S Struct X |
|
3 | strfv3.e | |- E = Slot ( E ` ndx ) |
|
4 | strfv3.n | |- { <. ( E ` ndx ) , C >. } C_ S |
|
5 | strfv3.c | |- ( ph -> C e. V ) |
|
6 | strfv3.a | |- A = ( E ` U ) |
|
7 | 2 3 4 | strfv | |- ( C e. V -> C = ( E ` S ) ) |
8 | 5 7 | syl | |- ( ph -> C = ( E ` S ) ) |
9 | 1 | fveq2d | |- ( ph -> ( E ` U ) = ( E ` S ) ) |
10 | 8 9 | eqtr4d | |- ( ph -> C = ( E ` U ) ) |
11 | 6 10 | eqtr4id | |- ( ph -> A = C ) |