Description: Deduction version of strfv . (Contributed by Mario Carneiro, 15-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | strfvd.e | |- E = Slot ( E ` ndx ) |
|
strfvd.s | |- ( ph -> S e. V ) |
||
strfvd.f | |- ( ph -> Fun S ) |
||
strfvd.n | |- ( ph -> <. ( E ` ndx ) , C >. e. S ) |
||
Assertion | strfvd | |- ( ph -> C = ( E ` S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfvd.e | |- E = Slot ( E ` ndx ) |
|
2 | strfvd.s | |- ( ph -> S e. V ) |
|
3 | strfvd.f | |- ( ph -> Fun S ) |
|
4 | strfvd.n | |- ( ph -> <. ( E ` ndx ) , C >. e. S ) |
|
5 | 1 2 | strfvnd | |- ( ph -> ( E ` S ) = ( S ` ( E ` ndx ) ) ) |
6 | funopfv | |- ( Fun S -> ( <. ( E ` ndx ) , C >. e. S -> ( S ` ( E ` ndx ) ) = C ) ) |
|
7 | 3 4 6 | sylc | |- ( ph -> ( S ` ( E ` ndx ) ) = C ) |
8 | 5 7 | eqtr2d | |- ( ph -> C = ( E ` S ) ) |