Metamath Proof Explorer


Theorem strfvd

Description: Deduction version of strfv . (Contributed by Mario Carneiro, 15-Nov-2014)

Ref Expression
Hypotheses strfvd.e
|- E = Slot ( E ` ndx )
strfvd.s
|- ( ph -> S e. V )
strfvd.f
|- ( ph -> Fun S )
strfvd.n
|- ( ph -> <. ( E ` ndx ) , C >. e. S )
Assertion strfvd
|- ( ph -> C = ( E ` S ) )

Proof

Step Hyp Ref Expression
1 strfvd.e
 |-  E = Slot ( E ` ndx )
2 strfvd.s
 |-  ( ph -> S e. V )
3 strfvd.f
 |-  ( ph -> Fun S )
4 strfvd.n
 |-  ( ph -> <. ( E ` ndx ) , C >. e. S )
5 1 2 strfvnd
 |-  ( ph -> ( E ` S ) = ( S ` ( E ` ndx ) ) )
6 funopfv
 |-  ( Fun S -> ( <. ( E ` ndx ) , C >. e. S -> ( S ` ( E ` ndx ) ) = C ) )
7 3 4 6 sylc
 |-  ( ph -> ( S ` ( E ` ndx ) ) = C )
8 5 7 eqtr2d
 |-  ( ph -> C = ( E ` S ) )