Metamath Proof Explorer


Theorem strfvss

Description: A structure component extractor produces a value which is contained in a set dependent on S , but not E . This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypothesis strfvss.e
|- E = Slot N
Assertion strfvss
|- ( E ` S ) C_ U. ran S

Proof

Step Hyp Ref Expression
1 strfvss.e
 |-  E = Slot N
2 id
 |-  ( S e. _V -> S e. _V )
3 1 2 strfvnd
 |-  ( S e. _V -> ( E ` S ) = ( S ` N ) )
4 fvssunirn
 |-  ( S ` N ) C_ U. ran S
5 3 4 eqsstrdi
 |-  ( S e. _V -> ( E ` S ) C_ U. ran S )
6 fvprc
 |-  ( -. S e. _V -> ( E ` S ) = (/) )
7 0ss
 |-  (/) C_ U. ran S
8 6 7 eqsstrdi
 |-  ( -. S e. _V -> ( E ` S ) C_ U. ran S )
9 5 8 pm2.61i
 |-  ( E ` S ) C_ U. ran S