| Step |
Hyp |
Ref |
Expression |
| 1 |
|
str.1 |
|- A e. CH |
| 2 |
|
str.2 |
|- B e. CH |
| 3 |
|
dfral2 |
|- ( A. f e. States ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) <-> -. E. f e. States -. ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) ) |
| 4 |
1 2
|
strlem1 |
|- ( -. A C_ B -> E. u e. ( A \ B ) ( normh ` u ) = 1 ) |
| 5 |
|
eqid |
|- ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) |
| 6 |
|
biid |
|- ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) ) |
| 7 |
5 6 1 2
|
strlem3 |
|- ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) e. States ) |
| 8 |
5 6 1 2
|
strlem6 |
|- ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> -. ( ( ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) ` A ) = 1 -> ( ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) ` B ) = 1 ) ) |
| 9 |
|
fveq1 |
|- ( f = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) -> ( f ` A ) = ( ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) ` A ) ) |
| 10 |
9
|
eqeq1d |
|- ( f = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) -> ( ( f ` A ) = 1 <-> ( ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) ` A ) = 1 ) ) |
| 11 |
|
fveq1 |
|- ( f = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) -> ( f ` B ) = ( ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) ` B ) ) |
| 12 |
11
|
eqeq1d |
|- ( f = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) -> ( ( f ` B ) = 1 <-> ( ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) ` B ) = 1 ) ) |
| 13 |
10 12
|
imbi12d |
|- ( f = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) -> ( ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) <-> ( ( ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) ` A ) = 1 -> ( ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) ` B ) = 1 ) ) ) |
| 14 |
13
|
notbid |
|- ( f = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) -> ( -. ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) <-> -. ( ( ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) ` A ) = 1 -> ( ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) ` B ) = 1 ) ) ) |
| 15 |
14
|
rspcev |
|- ( ( ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) e. States /\ -. ( ( ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) ` A ) = 1 -> ( ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) ` B ) = 1 ) ) -> E. f e. States -. ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) ) |
| 16 |
7 8 15
|
syl2anc |
|- ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> E. f e. States -. ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) ) |
| 17 |
16
|
rexlimiva |
|- ( E. u e. ( A \ B ) ( normh ` u ) = 1 -> E. f e. States -. ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) ) |
| 18 |
4 17
|
syl |
|- ( -. A C_ B -> E. f e. States -. ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) ) |
| 19 |
18
|
con1i |
|- ( -. E. f e. States -. ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) -> A C_ B ) |
| 20 |
3 19
|
sylbi |
|- ( A. f e. States ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) -> A C_ B ) |