| Step |
Hyp |
Ref |
Expression |
| 1 |
|
strlem1.1 |
|- A e. CH |
| 2 |
|
strlem1.2 |
|- B e. CH |
| 3 |
|
neq0 |
|- ( -. ( A \ B ) = (/) <-> E. x x e. ( A \ B ) ) |
| 4 |
|
ssdif0 |
|- ( A C_ B <-> ( A \ B ) = (/) ) |
| 5 |
3 4
|
xchnxbir |
|- ( -. A C_ B <-> E. x x e. ( A \ B ) ) |
| 6 |
|
eldifi |
|- ( x e. ( A \ B ) -> x e. A ) |
| 7 |
1
|
cheli |
|- ( x e. A -> x e. ~H ) |
| 8 |
|
normcl |
|- ( x e. ~H -> ( normh ` x ) e. RR ) |
| 9 |
6 7 8
|
3syl |
|- ( x e. ( A \ B ) -> ( normh ` x ) e. RR ) |
| 10 |
|
ch0 |
|- ( B e. CH -> 0h e. B ) |
| 11 |
2 10
|
ax-mp |
|- 0h e. B |
| 12 |
|
eldifn |
|- ( 0h e. ( A \ B ) -> -. 0h e. B ) |
| 13 |
11 12
|
mt2 |
|- -. 0h e. ( A \ B ) |
| 14 |
|
eleq1 |
|- ( x = 0h -> ( x e. ( A \ B ) <-> 0h e. ( A \ B ) ) ) |
| 15 |
13 14
|
mtbiri |
|- ( x = 0h -> -. x e. ( A \ B ) ) |
| 16 |
15
|
con2i |
|- ( x e. ( A \ B ) -> -. x = 0h ) |
| 17 |
|
norm-i |
|- ( x e. ~H -> ( ( normh ` x ) = 0 <-> x = 0h ) ) |
| 18 |
6 7 17
|
3syl |
|- ( x e. ( A \ B ) -> ( ( normh ` x ) = 0 <-> x = 0h ) ) |
| 19 |
16 18
|
mtbird |
|- ( x e. ( A \ B ) -> -. ( normh ` x ) = 0 ) |
| 20 |
19
|
neqned |
|- ( x e. ( A \ B ) -> ( normh ` x ) =/= 0 ) |
| 21 |
9 20
|
rereccld |
|- ( x e. ( A \ B ) -> ( 1 / ( normh ` x ) ) e. RR ) |
| 22 |
21
|
recnd |
|- ( x e. ( A \ B ) -> ( 1 / ( normh ` x ) ) e. CC ) |
| 23 |
1
|
chshii |
|- A e. SH |
| 24 |
|
shmulcl |
|- ( ( A e. SH /\ ( 1 / ( normh ` x ) ) e. CC /\ x e. A ) -> ( ( 1 / ( normh ` x ) ) .h x ) e. A ) |
| 25 |
23 24
|
mp3an1 |
|- ( ( ( 1 / ( normh ` x ) ) e. CC /\ x e. A ) -> ( ( 1 / ( normh ` x ) ) .h x ) e. A ) |
| 26 |
25
|
ex |
|- ( ( 1 / ( normh ` x ) ) e. CC -> ( x e. A -> ( ( 1 / ( normh ` x ) ) .h x ) e. A ) ) |
| 27 |
22 26
|
syl |
|- ( x e. ( A \ B ) -> ( x e. A -> ( ( 1 / ( normh ` x ) ) .h x ) e. A ) ) |
| 28 |
9
|
recnd |
|- ( x e. ( A \ B ) -> ( normh ` x ) e. CC ) |
| 29 |
2
|
chshii |
|- B e. SH |
| 30 |
|
shmulcl |
|- ( ( B e. SH /\ ( normh ` x ) e. CC /\ ( ( 1 / ( normh ` x ) ) .h x ) e. B ) -> ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) e. B ) |
| 31 |
29 30
|
mp3an1 |
|- ( ( ( normh ` x ) e. CC /\ ( ( 1 / ( normh ` x ) ) .h x ) e. B ) -> ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) e. B ) |
| 32 |
31
|
ex |
|- ( ( normh ` x ) e. CC -> ( ( ( 1 / ( normh ` x ) ) .h x ) e. B -> ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) e. B ) ) |
| 33 |
28 32
|
syl |
|- ( x e. ( A \ B ) -> ( ( ( 1 / ( normh ` x ) ) .h x ) e. B -> ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) e. B ) ) |
| 34 |
28 20
|
recidd |
|- ( x e. ( A \ B ) -> ( ( normh ` x ) x. ( 1 / ( normh ` x ) ) ) = 1 ) |
| 35 |
34
|
oveq1d |
|- ( x e. ( A \ B ) -> ( ( ( normh ` x ) x. ( 1 / ( normh ` x ) ) ) .h x ) = ( 1 .h x ) ) |
| 36 |
6 7
|
syl |
|- ( x e. ( A \ B ) -> x e. ~H ) |
| 37 |
|
ax-hvmulass |
|- ( ( ( normh ` x ) e. CC /\ ( 1 / ( normh ` x ) ) e. CC /\ x e. ~H ) -> ( ( ( normh ` x ) x. ( 1 / ( normh ` x ) ) ) .h x ) = ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) ) |
| 38 |
28 22 36 37
|
syl3anc |
|- ( x e. ( A \ B ) -> ( ( ( normh ` x ) x. ( 1 / ( normh ` x ) ) ) .h x ) = ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) ) |
| 39 |
|
ax-hvmulid |
|- ( x e. ~H -> ( 1 .h x ) = x ) |
| 40 |
6 7 39
|
3syl |
|- ( x e. ( A \ B ) -> ( 1 .h x ) = x ) |
| 41 |
35 38 40
|
3eqtr3d |
|- ( x e. ( A \ B ) -> ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) = x ) |
| 42 |
41
|
eleq1d |
|- ( x e. ( A \ B ) -> ( ( ( normh ` x ) .h ( ( 1 / ( normh ` x ) ) .h x ) ) e. B <-> x e. B ) ) |
| 43 |
33 42
|
sylibd |
|- ( x e. ( A \ B ) -> ( ( ( 1 / ( normh ` x ) ) .h x ) e. B -> x e. B ) ) |
| 44 |
43
|
con3d |
|- ( x e. ( A \ B ) -> ( -. x e. B -> -. ( ( 1 / ( normh ` x ) ) .h x ) e. B ) ) |
| 45 |
27 44
|
anim12d |
|- ( x e. ( A \ B ) -> ( ( x e. A /\ -. x e. B ) -> ( ( ( 1 / ( normh ` x ) ) .h x ) e. A /\ -. ( ( 1 / ( normh ` x ) ) .h x ) e. B ) ) ) |
| 46 |
|
eldif |
|- ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) ) |
| 47 |
|
eldif |
|- ( ( ( 1 / ( normh ` x ) ) .h x ) e. ( A \ B ) <-> ( ( ( 1 / ( normh ` x ) ) .h x ) e. A /\ -. ( ( 1 / ( normh ` x ) ) .h x ) e. B ) ) |
| 48 |
45 46 47
|
3imtr4g |
|- ( x e. ( A \ B ) -> ( x e. ( A \ B ) -> ( ( 1 / ( normh ` x ) ) .h x ) e. ( A \ B ) ) ) |
| 49 |
48
|
pm2.43i |
|- ( x e. ( A \ B ) -> ( ( 1 / ( normh ` x ) ) .h x ) e. ( A \ B ) ) |
| 50 |
|
norm-iii |
|- ( ( ( 1 / ( normh ` x ) ) e. CC /\ x e. ~H ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = ( ( abs ` ( 1 / ( normh ` x ) ) ) x. ( normh ` x ) ) ) |
| 51 |
22 36 50
|
syl2anc |
|- ( x e. ( A \ B ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = ( ( abs ` ( 1 / ( normh ` x ) ) ) x. ( normh ` x ) ) ) |
| 52 |
15
|
necon2ai |
|- ( x e. ( A \ B ) -> x =/= 0h ) |
| 53 |
|
normgt0 |
|- ( x e. ~H -> ( x =/= 0h <-> 0 < ( normh ` x ) ) ) |
| 54 |
6 7 53
|
3syl |
|- ( x e. ( A \ B ) -> ( x =/= 0h <-> 0 < ( normh ` x ) ) ) |
| 55 |
52 54
|
mpbid |
|- ( x e. ( A \ B ) -> 0 < ( normh ` x ) ) |
| 56 |
|
1re |
|- 1 e. RR |
| 57 |
|
0le1 |
|- 0 <_ 1 |
| 58 |
|
divge0 |
|- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( normh ` x ) e. RR /\ 0 < ( normh ` x ) ) ) -> 0 <_ ( 1 / ( normh ` x ) ) ) |
| 59 |
56 57 58
|
mpanl12 |
|- ( ( ( normh ` x ) e. RR /\ 0 < ( normh ` x ) ) -> 0 <_ ( 1 / ( normh ` x ) ) ) |
| 60 |
9 55 59
|
syl2anc |
|- ( x e. ( A \ B ) -> 0 <_ ( 1 / ( normh ` x ) ) ) |
| 61 |
21 60
|
absidd |
|- ( x e. ( A \ B ) -> ( abs ` ( 1 / ( normh ` x ) ) ) = ( 1 / ( normh ` x ) ) ) |
| 62 |
61
|
oveq1d |
|- ( x e. ( A \ B ) -> ( ( abs ` ( 1 / ( normh ` x ) ) ) x. ( normh ` x ) ) = ( ( 1 / ( normh ` x ) ) x. ( normh ` x ) ) ) |
| 63 |
28 20
|
recid2d |
|- ( x e. ( A \ B ) -> ( ( 1 / ( normh ` x ) ) x. ( normh ` x ) ) = 1 ) |
| 64 |
51 62 63
|
3eqtrd |
|- ( x e. ( A \ B ) -> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = 1 ) |
| 65 |
|
fveqeq2 |
|- ( u = ( ( 1 / ( normh ` x ) ) .h x ) -> ( ( normh ` u ) = 1 <-> ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = 1 ) ) |
| 66 |
65
|
rspcev |
|- ( ( ( ( 1 / ( normh ` x ) ) .h x ) e. ( A \ B ) /\ ( normh ` ( ( 1 / ( normh ` x ) ) .h x ) ) = 1 ) -> E. u e. ( A \ B ) ( normh ` u ) = 1 ) |
| 67 |
49 64 66
|
syl2anc |
|- ( x e. ( A \ B ) -> E. u e. ( A \ B ) ( normh ` u ) = 1 ) |
| 68 |
67
|
exlimiv |
|- ( E. x x e. ( A \ B ) -> E. u e. ( A \ B ) ( normh ` u ) = 1 ) |
| 69 |
5 68
|
sylbi |
|- ( -. A C_ B -> E. u e. ( A \ B ) ( normh ` u ) = 1 ) |