| Step |
Hyp |
Ref |
Expression |
| 1 |
|
strlem3.1 |
|- S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) |
| 2 |
|
strlem3.2 |
|- ( ph <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) ) |
| 3 |
|
strlem3.3 |
|- A e. CH |
| 4 |
|
strlem3.4 |
|- B e. CH |
| 5 |
1 2 3 4
|
strlem4 |
|- ( ph -> ( S ` A ) = 1 ) |
| 6 |
1 2 3 4
|
strlem3 |
|- ( ph -> S e. States ) |
| 7 |
|
stcl |
|- ( S e. States -> ( B e. CH -> ( S ` B ) e. RR ) ) |
| 8 |
6 4 7
|
mpisyl |
|- ( ph -> ( S ` B ) e. RR ) |
| 9 |
1 2 3 4
|
strlem5 |
|- ( ph -> ( S ` B ) < 1 ) |
| 10 |
8 9
|
ltned |
|- ( ph -> ( S ` B ) =/= 1 ) |
| 11 |
10
|
neneqd |
|- ( ph -> -. ( S ` B ) = 1 ) |
| 12 |
5 11
|
jcnd |
|- ( ph -> -. ( ( S ` A ) = 1 -> ( S ` B ) = 1 ) ) |