Metamath Proof Explorer


Theorem strov2rcl

Description: Partial reverse closure for any structure defined as a two-argument function. (Contributed by Stefan O'Rear, 27-Mar-2015) (Proof shortened by AV, 2-Dec-2019)

Ref Expression
Hypotheses strov2rcl.s
|- S = ( I F R )
strov2rcl.b
|- B = ( Base ` S )
strov2rcl.f
|- Rel dom F
Assertion strov2rcl
|- ( X e. B -> I e. _V )

Proof

Step Hyp Ref Expression
1 strov2rcl.s
 |-  S = ( I F R )
2 strov2rcl.b
 |-  B = ( Base ` S )
3 strov2rcl.f
 |-  Rel dom F
4 3 1 2 elbasov
 |-  ( X e. B -> ( I e. _V /\ R e. _V ) )
5 4 simpld
 |-  ( X e. B -> I e. _V )