Metamath Proof Explorer


Theorem strss

Description: Propagate component extraction to a structure T from a subset structure S . (Contributed by Mario Carneiro, 11-Oct-2013) (Revised by Mario Carneiro, 15-Jan-2014)

Ref Expression
Hypotheses strss.t
|- T e. _V
strss.f
|- Fun T
strss.s
|- S C_ T
strss.e
|- E = Slot ( E ` ndx )
strss.n
|- <. ( E ` ndx ) , C >. e. S
Assertion strss
|- ( E ` T ) = ( E ` S )

Proof

Step Hyp Ref Expression
1 strss.t
 |-  T e. _V
2 strss.f
 |-  Fun T
3 strss.s
 |-  S C_ T
4 strss.e
 |-  E = Slot ( E ` ndx )
5 strss.n
 |-  <. ( E ` ndx ) , C >. e. S
6 1 a1i
 |-  ( T. -> T e. _V )
7 2 a1i
 |-  ( T. -> Fun T )
8 3 a1i
 |-  ( T. -> S C_ T )
9 5 a1i
 |-  ( T. -> <. ( E ` ndx ) , C >. e. S )
10 4 6 7 8 9 strssd
 |-  ( T. -> ( E ` T ) = ( E ` S ) )
11 10 mptru
 |-  ( E ` T ) = ( E ` S )